Line 10: Line 10:
 
|-
 
|-
 
! Function  
 
! Function  
! Coefficients
+
! Fourier Series  
! Fourier Series
+
! Coefficients
 
|-
 
|-
 
| <math>sin(w_0t)</math>  
 
| <math>sin(w_0t)</math>  
Line 20: Line 20:
 
| <math>\frac{1}{2}e^{jw_0t}+\frac{1}{2}e^{-jw_0t}</math>  
 
| <math>\frac{1}{2}e^{jw_0t}+\frac{1}{2}e^{-jw_0t}</math>  
 
| <math>a_1=\frac{1}{2}, a_{-1}=\frac{1}{2}, a_k=0 \mbox{ for } k \ne 1,-1</math>
 
| <math>a_1=\frac{1}{2}, a_{-1}=\frac{1}{2}, a_k=0 \mbox{ for } k \ne 1,-1</math>
 +
|-
 +
| periodic square wave
 +
<math>x(t)=\begin{cases}
 +
1,  & \mbox{if }t<T_1 \\
 +
0, & \mbox{if }T_1<t<T/2
 +
\end{cases}</math>
 +
 +
where T is the period and <math>2T_1</math> is the width of the pulse
 +
| <math>\sum_{k=1}^N k^2 a_k e^{jk(\frac{2\pi}{T})t}</math>
 +
(just the normal formula)
 +
| <math>a_k = \frac{2sin(k\omega_0T_1)}{k\omega_0T_1}</math>
 
|}
 
|}
  

Revision as of 14:09, 16 February 2011

Table of CT Fourier series coefficients and properties

THIS PAGE IS STILL UNDER CONSTRUCTION
You may want to switch the titles of the second and third column. -pm

Some Fourier series

Function Fourier Series Coefficients
$ sin(w_0t) $ $ \frac{1}{2j}e^{jw_0t}-\frac{1}{2j}e^{-jw_0t} $ $ a_1=\frac{1}{2j}, a_{-1}=\frac{-1}{2j}, a_k=0 \mbox{ for } k \ne 1,-1 $
$ cos(w_0t) $ $ \frac{1}{2}e^{jw_0t}+\frac{1}{2}e^{-jw_0t} $ $ a_1=\frac{1}{2}, a_{-1}=\frac{1}{2}, a_k=0 \mbox{ for } k \ne 1,-1 $
periodic square wave

$ x(t)=\begin{cases} 1, & \mbox{if }t<T_1 \\ 0, & \mbox{if }T_1<t<T/2 \end{cases} $

where T is the period and $ 2T_1 $ is the width of the pulse

$ \sum_{k=1}^N k^2 a_k e^{jk(\frac{2\pi}{T})t} $

(just the normal formula)

$ a_k = \frac{2sin(k\omega_0T_1)}{k\omega_0T_1} $

Properties of CT Fourier systems

Property Periodic Signal Fourier Series Coefficients

Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn