Line 9: Line 9:
 
Parametrize the circular part of the boundary via
 
Parametrize the circular part of the boundary via
  
<math>C_r:\quad z(t)=Re^{it}, 0<t<\pi/4.</math>
+
<math>C_R:\quad z(t)=Re^{it}, 0<t<\pi/4.</math>
  
 
You need to show that
 
You need to show that
Line 19: Line 19:
 
<math>|I_R|\le\int_0^{\pi/4} Re^{-R^2\cos(2t)}\,dt</math>
 
<math>|I_R|\le\int_0^{\pi/4} Re^{-R^2\cos(2t)}\,dt</math>
  
and use freshman calculus ideas to show that this integral tends to zero.  (Don't hit it with the big stick, the Lebesgue Dominated Convergence Theorem.)
+
and use freshman calculus ideas to show that this integral tends to zero.  (Don't hit it with the big stick, the Lebesgue Dominated Convergence Theorem.) Hint:  Draw the graph of cos_2t on the interval and realize that the line connecting the endpoints is under the graph.  Compare the integral with what you would get by replacing cos_2t by the simple linear function underneath it.
  
  

Revision as of 09:44, 9 February 2011

Homework 4 discussion area

Problem 7 hint:

$ e^{\pm f(z)} $

Problem 10 hint:

Parametrize the circular part of the boundary via

$ C_R:\quad z(t)=Re^{it}, 0<t<\pi/4. $

You need to show that

$ I_R := \int_{C_R}e^{-z^2}\ dz\to 0 $

as R goes to infinity. You won't be able to use the standard estimate to do this. Write out the definition of the integral to find that

$ |I_R|\le\int_0^{\pi/4} Re^{-R^2\cos(2t)}\,dt $

and use freshman calculus ideas to show that this integral tends to zero. (Don't hit it with the big stick, the Lebesgue Dominated Convergence Theorem.) Hint: Draw the graph of cos_2t on the interval and realize that the line connecting the endpoints is under the graph. Compare the integral with what you would get by replacing cos_2t by the simple linear function underneath it.


Back to the MA 530 Rhea start page

To Rhea Course List

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett