m
Line 24: Line 24:
 
Solution 1:
 
Solution 1:
 
   
 
   
1) ω<sub>o</sub> = <math>\frac{2\pi}{T} = 2\frac{\pi}{20}=\frac{\pi}{10}</math>
+
1) <math>w_o = \frac{2\pi}{T} = 2\frac{\pi}{20}=\frac{\pi}{10}</math>
  
 
2) a<sub>o</sub> is the DC value of the AC signal and is therefore 1/2
 
2) a<sub>o</sub> is the DC value of the AC signal and is therefore 1/2
  
3) a<sub>k</sub> = <math> 1/20 * \int_a^b \! x(t)*e^{-j*k*(\pi/10)*t}\,dx </math> = <math>e^{j*k*\pi/2}-e^{-j*k*\pi/2}/(2*\pi*j*k) = \frac{sin(k\pi/2)}{(k\pi)}</math>([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
+
3) <math>a_k= 1/20 * \int_{-5}^{5} \! x(t)*e^{-j*k*(\pi/10)*t}\,dx </math> = <math>e^{j*k*\pi/2}-e^{-j*k*\pi/2}/(2*\pi*j*k) = \frac{sin(k\pi/2)}{(k\pi)}</math>([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
  
 
Solution 2:
 
Solution 2:
  
1)ω<sub>o</sub>=<math>\frac{\pi}{10}</math> (see solution 1)
+
1)<math>w_o=\frac{\pi}{10}</math> (see solution 1)
  
 
From example 3.5 (sec. 3.3 pg 193 Signals and Systems 2nd edition Oppenheim)
 
From example 3.5 (sec. 3.3 pg 193 Signals and Systems 2nd edition Oppenheim)
 
+
where T_1 is half the pulse width,
 
<math>a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)}</math>,
 
<math>a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)}</math>,
 +
  
 
2)a<sub>o</sub> is still the DC value of the AC signal and therefore,  
 
2)a<sub>o</sub> is still the DC value of the AC signal and therefore,  
 
a<sub>o</sub> = 1/2
 
a<sub>o</sub> = 1/2
  
From <math>a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)}</math>,
+
From <math>a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)}</math>
  
3) a<sub>k</sub> = <math>\frac{sin(k\pi/2)}{(k\pi)}</math>
+
3)<math>a_k=\frac{sin(k\pi/2)}{(k\pi)}</math>
 
([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
 
([[User:Clarkjv|Clarkjv]] 18:25, 8 February 2011 (UTC))
  
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]
 
[[Category:ECE301Spring2011Boutin]] [[Category:Problem_solving]]

Revision as of 13:57, 8 February 2011

Practice Question on Computing the Fourier Series discrete-time signal

Obtain the Fourier series the DT signal

$ x[n] = \left\{ \begin{array}{ll} 1, & \text{ for } -5\leq n \leq 5,\\ 0, & \text{ for } 5< |n| \leq 10. \end{array} \right. \ $

x[n] periodic with period 20.


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

Solution 1:

1) $ w_o = \frac{2\pi}{T} = 2\frac{\pi}{20}=\frac{\pi}{10} $

2) ao is the DC value of the AC signal and is therefore 1/2

3) $ a_k= 1/20 * \int_{-5}^{5} \! x(t)*e^{-j*k*(\pi/10)*t}\,dx $ = $ e^{j*k*\pi/2}-e^{-j*k*\pi/2}/(2*\pi*j*k) = \frac{sin(k\pi/2)}{(k\pi)} $(Clarkjv 18:25, 8 February 2011 (UTC))

Solution 2:

1)$ w_o=\frac{\pi}{10} $ (see solution 1)

From example 3.5 (sec. 3.3 pg 193 Signals and Systems 2nd edition Oppenheim) where T_1 is half the pulse width, $ a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)} $,


2)ao is still the DC value of the AC signal and therefore, ao = 1/2

From $ a_k=\frac{sin(k * w_o * T_1)}{(k*\pi)} $

3)$ a_k=\frac{sin(k\pi/2)}{(k\pi)} $ (Clarkjv 18:25, 8 February 2011 (UTC))

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood