(New page: Category:ECE301Spring2011Boutin Category:problem solving = Practice Question on Computing the Fourier Series coefficients of a discrete-time (sampled) cosine wave= Obtain the Fouri...)
 
Line 11: Line 11:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
Write it here.
+
 
 +
for <math>cos(n)</math>,  the coefficients are <math>a_1=\frac{1}{2},a_{-1}=\frac{1}{2}, a_k=0 \mbox{ for }k\ne 1,-1</math>
 +
 
 +
Time shift property:  <math>x(n-n_0) \to e^{-jkw_0n_0}a_k</math>
 +
 
 +
Thus with <math>w_0=3\pi\,</math> and <math>n_0=\frac{-\pi}{2}</math>,
 +
 
 +
<math>a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2},a_{-1}=\frac{e^{-j 3 \pi \frac{\pi}{2}}}{2}, a_k=0 \mbox{ for }k\ne 1,-1</math>
 +
 
 +
Is that right?  I'm not sure about the time shift property.
 +
 
 +
--[[User:Cmcmican|Cmcmican]] 21:53, 7 February 2011 (UTC)
 +
 
 
===Answer 2===
 
===Answer 2===
 
Write it here.
 
Write it here.

Revision as of 16:53, 7 February 2011

Practice Question on Computing the Fourier Series coefficients of a discrete-time (sampled) cosine wave

Obtain the Fourier series coefficients of the DT signal

$ x[n] = \cos \left(3\pi n + \frac{\pi}{2} \right) . \ $


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

for $ cos(n) $, the coefficients are $ a_1=\frac{1}{2},a_{-1}=\frac{1}{2}, a_k=0 \mbox{ for }k\ne 1,-1 $

Time shift property: $ x(n-n_0) \to e^{-jkw_0n_0}a_k $

Thus with $ w_0=3\pi\, $ and $ n_0=\frac{-\pi}{2} $,

$ a_1=\frac{e^{j 3 \pi \frac{\pi}{2}}}{2},a_{-1}=\frac{e^{-j 3 \pi \frac{\pi}{2}}}{2}, a_k=0 \mbox{ for }k\ne 1,-1 $

Is that right? I'm not sure about the time shift property.

--Cmcmican 21:53, 7 February 2011 (UTC)

Answer 2

Write it here.

Answer 3

Write it here.


Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch