Line 7: | Line 7: | ||
= \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt | = \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt | ||
= \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2} | = \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2} | ||
− | </math> | + | </math> |
+ | |||
+ | |||
<math class = "inline"> | <math class = "inline"> | ||
P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt | P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt | ||
Line 13: | Line 15: | ||
= \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right] | = \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right] | ||
= \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0 | = \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0 | ||
− | </math> | + | </math> |
+ | |||
Since the signal has '''finite energy''', then we expect that it has '''zero average power'''.<br><br> | Since the signal has '''finite energy''', then we expect that it has '''zero average power'''.<br><br> | ||
Line 28: | Line 31: | ||
= \lim_{T \rightarrow \infty} \frac{T}{2T} | = \lim_{T \rightarrow \infty} \frac{T}{2T} | ||
= \frac{1}{2} | = \frac{1}{2} | ||
− | </math> | + | </math> |
+ | |||
+ | |||
Since the signal has '''infinite energy''', then we expect that it has '''average power that is greater than zero'''.<br><br> | Since the signal has '''infinite energy''', then we expect that it has '''average power that is greater than zero'''.<br><br> | ||
c) | c) | ||
Line 43: | Line 48: | ||
= \frac{1}{9} \cdot \frac{1}{2} | = \frac{1}{9} \cdot \frac{1}{2} | ||
= \frac{1}{18} | = \frac{1}{18} | ||
− | </math> | + | </math> |
+ | |||
== Question 2 == | == Question 2 == | ||
Line 51: | Line 57: | ||
= e^{j\frac{3}{5}\pi N} \cdot e^{j\frac{3}{5}\pi(n-1/2)} | = e^{j\frac{3}{5}\pi N} \cdot e^{j\frac{3}{5}\pi(n-1/2)} | ||
</math><br><br> | </math><br><br> | ||
− | For <math>x[n+N]</math> to be equal to <math>x[n]</math>, <math class="inline">e^{j\frac{3}{5}\pi N}</math> should be equal to one. | + | For <math>x[n+N]</math> to be equal to <math>x[n]</math>, <math class="inline">e^{j\frac{3}{5}\pi N}</math> should be equal to one. |
− | This implies that <math class="inline">3\pi N/5 = 2\pi K</math>, where <math>k</math> is an integer, or <math> N=10k/3</math>. Now, the smallest integer N that is not zero is 10. Then the fundamental period of this signal is 10. | + | |
+ | |||
+ | This implies that <math class="inline">3\pi N/5 = 2\pi K</math>, where <math>k</math> is an integer, or <math> N=10k/3</math>. Now, the smallest integer N that is not zero is 10. Then the '''fundamental period of this signal is 10'''. | ||
+ | |||
b) | b) | ||
+ | <math class ="inline"> | ||
+ | x(t)=\cos^2 t = \frac{1}{2}+\frac{1}{2}\cos(2t) | ||
+ | </math><br> | ||
+ | <math class ="inline"> | ||
+ | x(t+T)= \frac{1}{2}+\frac{1}{2}\cos(2t+2T) | ||
+ | </math><br> | ||
+ | <math>x(t+T)=x(t)</math> for <math>T=\pi k</math>, where <math>k</math> is an integer. Now, the smallest nonzero <math>T</math> is <math>\pi</math>, and hence the '''fundamental period is '''<math>\pi</math>. | ||
+ | |||
+ | |||
+ | c) | ||
+ | <math class ="inline"> | ||
+ | x[n]=\cos^2 n = \frac{1}{2}+\frac{1}{2}\cos[2n] | ||
+ | </math><br> | ||
+ | <math class ="inline"> | ||
+ | x[n+N]= \frac{1}{2}+\frac{1}{2}\cos[2n+2N] | ||
+ | </math><br> | ||
+ | <math>x[n+N]=x[n]</math> for <math>N=\pi k</math>, where <math>k</math> is an integer. Since <math>x[n]</math> is a discrete-time signal and <math>N</math> is a multiple of <math>\pi</math>, i.e. any non-zero <math>N</math> is not an interger, then we can say that the signal is '''not periodic'''. | ||
+ | |||
+ | |||
+ | d)<br> | ||
+ | <math class="inline"> | ||
+ | \begin{align} | ||
+ | x[n+N] &= 1 + e^{j\frac{4\pi}{7}(n+N)}-e^{j\frac{2\pi}{5}(n+N)} \\ | ||
+ | &= 1+e^{j\frac{4\pi}{7}N}\cdot e^{j\frac{4\pi}{7}n} - e^{j\frac{2\pi}{5}N} \cdot e^{j\frac{2\pi}{5} n} \\ | ||
+ | \end{align} | ||
+ | </math> | ||
+ | |||
+ | We can see that for <math>N=35k</math>, where k is an integer, <math>x[n+N]=x[n]</math>. Then the '''fundamental frequency is 35'''. | ||
+ | |||
+ | Note that we can find the fundamental frequency of this signal directly by knowing that the fundamental period of the sum of periodic signals is the least common multiple of the periods of the individual signals. For this specific signal, the first term has a fundamental period of 1, the second term has a fundamental period of 7, and the third term has a fundamental period of 5. Thus the fundamental period of the sum of these terms or signals is the least common multiple of 1, 7, and 5 which is 35. <br> | ||
+ | Note also that the fundamental period of a complex exponential of the form <math class="inline">e^{j\frac{2\pi}{N}n}</math> is N. | ||
+ | |||
+ | e) If we let <math class="inline">f(t)=\frac{1}{1+t^2}</math>, then x(t) can be written in the form of <math class="inline">x(t) = \sum_{k=-\infty}^{\infty}f(t-7k)</math>. | ||
+ | |||
+ | Then the '''fundamental period is 7'''. |
Revision as of 06:45, 2 February 2011
Homework 2 Solutions
Question 1
a) $ E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \int_{0}^{T} e^{-2t}dt = \lim_{T \rightarrow \infty} -\frac{1}{2}\left[e^{-2T}-e^0\right]=\frac{1}{2} $
$ P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{-t}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} e^{-2t}dt = \lim_{T \rightarrow \infty} -\frac{1}{4T}\left[e^{-2T}-e^0\right] = \lim_{T \rightarrow \infty} \frac{1-e^{-2T}}{4T}=0 $
Since the signal has finite energy, then we expect that it has zero average power.
b)
$ E_\infty = \lim_{T \rightarrow \infty} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \int_{0}^{T} dt = \lim_{T \rightarrow \infty} T = \infty $
$ P_\infty = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{T} \left|e^{jt}u(t)\right|^2dt = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{0}^{T} dt = \lim_{T \rightarrow \infty} \frac{T}{2T} = \frac{1}{2} $
Since the signal has infinite energy, then we expect that it has average power that is greater than zero.
c)
$ E_\infty = \lim_{N \rightarrow \infty} \sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2 = \lim_{N \rightarrow \infty} \sum_{n=0}^{N} \frac{1}{9} = \lim_{N \rightarrow \infty} \frac{1}{9}(N+1) = \infty $
$ P_\infty = \lim_{N \rightarrow \infty} \frac{1}{2N+1}\sum_{n=-N}^{N} \left|\frac{1}{3}u[n]\right|^2 = \lim_{N \rightarrow \infty} \frac{1}{2N+1} \sum_{n=0}^{N} \frac{1}{9} = \lim_{N \rightarrow \infty} \frac{1}{9} \cdot \frac{N+1}{2N+1} = \frac{1}{9} \cdot \frac{1}{2} = \frac{1}{18} $
Question 2
a)
$ x[n+N] = e^{j\frac{3}{5}\pi(n+N-1/2)} = e^{j\frac{3}{5}\pi N} \cdot e^{j\frac{3}{5}\pi(n-1/2)} $
For $ x[n+N] $ to be equal to $ x[n] $, $ e^{j\frac{3}{5}\pi N} $ should be equal to one.
This implies that $ 3\pi N/5 = 2\pi K $, where $ k $ is an integer, or $ N=10k/3 $. Now, the smallest integer N that is not zero is 10. Then the fundamental period of this signal is 10.
b)
$ x(t)=\cos^2 t = \frac{1}{2}+\frac{1}{2}\cos(2t) $
$ x(t+T)= \frac{1}{2}+\frac{1}{2}\cos(2t+2T) $
$ x(t+T)=x(t) $ for $ T=\pi k $, where $ k $ is an integer. Now, the smallest nonzero $ T $ is $ \pi $, and hence the fundamental period is $ \pi $.
c)
$ x[n]=\cos^2 n = \frac{1}{2}+\frac{1}{2}\cos[2n] $
$ x[n+N]= \frac{1}{2}+\frac{1}{2}\cos[2n+2N] $
$ x[n+N]=x[n] $ for $ N=\pi k $, where $ k $ is an integer. Since $ x[n] $ is a discrete-time signal and $ N $ is a multiple of $ \pi $, i.e. any non-zero $ N $ is not an interger, then we can say that the signal is not periodic.
d)
$ \begin{align} x[n+N] &= 1 + e^{j\frac{4\pi}{7}(n+N)}-e^{j\frac{2\pi}{5}(n+N)} \\ &= 1+e^{j\frac{4\pi}{7}N}\cdot e^{j\frac{4\pi}{7}n} - e^{j\frac{2\pi}{5}N} \cdot e^{j\frac{2\pi}{5} n} \\ \end{align} $
We can see that for $ N=35k $, where k is an integer, $ x[n+N]=x[n] $. Then the fundamental frequency is 35.
Note that we can find the fundamental frequency of this signal directly by knowing that the fundamental period of the sum of periodic signals is the least common multiple of the periods of the individual signals. For this specific signal, the first term has a fundamental period of 1, the second term has a fundamental period of 7, and the third term has a fundamental period of 5. Thus the fundamental period of the sum of these terms or signals is the least common multiple of 1, 7, and 5 which is 35.
Note also that the fundamental period of a complex exponential of the form $ e^{j\frac{2\pi}{N}n} $ is N.
e) If we let $ f(t)=\frac{1}{1+t^2} $, then x(t) can be written in the form of $ x(t) = \sum_{k=-\infty}^{\infty}f(t-7k) $.
Then the fundamental period is 7.