(New page: clear clc %Global Variables Gfreq = 2^(-2/12)*440; %Frequency of a G Bbfreq = 2^(1/12)*440; %Frequency of a B flat Cfreq = 2^(3/12)*440; %Frequency of a C Dbfreq = 2^(4/12)*440; %Fre...)
 
 
Line 149: Line 149:
  
 
%Fowards is Number Nine and reverse is Turn me on dead man
 
%Fowards is Number Nine and reverse is Turn me on dead man
 +
 +
I could not attach sound files due to the fact that Purdue Computers do not allow you to access files that are saved to the Q: (default) drive.

Latest revision as of 10:55, 19 January 2011

clear

clc

%Global Variables

Gfreq = 2^(-2/12)*440; %Frequency of a G

Bbfreq = 2^(1/12)*440; %Frequency of a B flat

Cfreq = 2^(3/12)*440; %Frequency of a C

Dbfreq = 2^(4/12)*440; %Frequency of a D flat


delta = 1/8192; %Sampling Frequency


bpm = 112; %Beat per minute

bps = bpm/60; %Beats per second


Qnote = 1/bps; %Length of a quater note in seconds


Qlength = 0:delta:Qnote; %Array for a quater note

Elength = 0:delta:Qnote/2; %Array for an eighth note

DQlength = 0:delta:Qnote*1.5; %Array for a dotted quater note

Hlength = 0:delta:Qnote*2; %Array for a half note


%Song

GQnote = sin(2*pi*Gfreq*Qlength); %G with a quater note length

BbQnote = sin(2*pi*Bbfreq*Qlength); %G with a quater note length

CDQnote = sin(2*pi*Cfreq*DQlength); %G with a quater note length

DbEnote = sin(2*pi*Dbfreq*Elength); %G with a quater note length

CHnote = sin(2*pi*Cfreq*Hlength); %G with a quater note length

Erest = 0*Elength; %G with a quater note length

Hrest = 0*Hlength; %G with a quater note length


SotW = [GQnote,BbQnote,CDQnote,GQnote,BbQnote,DbEnote,CHnote,GQnote,BbQnote,CDQnote,BbQnote,GQnote,Erest,Hrest];


%Song

sound(SotW,1/delta) %Regular speed

wavwrite(SotW,1/delta,'Smoke Regular'); %Regular speed


Qnote = 1/(2*bps); %Length of a quater note in seconds


Qlength = 0:delta:Qnote; %Array for a quater note

Elength = 0:delta:Qnote/2; %Array for an eighth note

DQlength = 0:delta:Qnote*1.5; %Array for a dotted quater note

Hlength = 0:delta:Qnote*2; %Array for a half note

%Song

GQnote = sin(2*pi*Gfreq*Qlength); %G with a quater note length

BbQnote = sin(2*pi*Bbfreq*Qlength); %G with a quater note length

CDQnote = sin(2*pi*Cfreq*DQlength); %G with a quater note length

DbEnote = sin(2*pi*Dbfreq*Elength); %G with a quater note length

CHnote = sin(2*pi*Cfreq*Hlength); %G with a quater note length

Erest = 0*Elength; %G with a quater note length

Hrest = 0*Hlength; %G with a quater note length


SotW = [GQnote,BbQnote,CDQnote,GQnote,BbQnote,DbEnote,CHnote,GQnote,BbQnote,CDQnote,BbQnote,GQnote,Erest,Hrest];


%Song

sound(SotW,1/delta) %Twice the Speed

wavwrite(SotW,1/delta,'Smoke Twice Speed'); %Twice the Speed


Qnote = 2/bps; %Length of a quater note in seconds

Qlength = 0:delta:Qnote; %Array for a quater note

Elength = 0:delta:Qnote/2; %Array for an eighth note

DQlength = 0:delta:Qnote*1.5; %Array for a dotted quater note

Hlength = 0:delta:Qnote*2; %Array for a half note


%Song

GQnote = sin(2*pi*Gfreq*Qlength); %G with a quater note length

BbQnote = sin(2*pi*Bbfreq*Qlength); %G with a quater note length

CDQnote = sin(2*pi*Cfreq*DQlength); %G with a quater note length

DbEnote = sin(2*pi*Dbfreq*Elength); %G with a quater note length

CHnote = sin(2*pi*Cfreq*Hlength); %G with a quater note length

Erest = 0*Elength; %G with a quater note length

Hrest = 0*Hlength; %G with a quater note length


SotW = [GQnote,BbQnote,CDQnote,GQnote,BbQnote,DbEnote,CHnote,GQnote,BbQnote,CDQnote,BbQnote,GQnote,Erest,Hrest];


%Song

sound(SotW,1/delta) %Twice the Length

wavwrite(SotW,1/delta,'Smoke Half Speed'); %Twice the Length


[Beatles,Fs] = wavread('Beatles.wav'); %Creating an array of the Beatles Song

Bealtesrev = flipud(Beatles); %Reversing the Song


sound(Beatlesrev,Fs)

wavwrite(Beatlesrev,Fs,'Bealtes song backwards');


%Fowards is Number Nine and reverse is Turn me on dead man

I could not attach sound files due to the fact that Purdue Computers do not allow you to access files that are saved to the Q: (default) drive.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett