Line 14: Line 14:
 
----
 
----
 
===Answer 1===
 
===Answer 1===
write it here.
+
a)<math>|e^2|</math> = <math>\sqrt{(e^2)^2}</math> = <math> e^2</math> ([[User:Clarkjv|Clarkjv]] 18:33, 10 January 2011 (UTC))
  
<math>|e^2|</math> = <math>\sqrt{(e^2)^2}</math> = <math> e^2</math> ([[User:Clarkjv|Clarkjv]] 18:33, 10 January 2011 (UTC))
+
b) <math>|e^(2j)|</math> = <math>\sqrt{(e^2)^2}</math> = <math>e^2</math> ([[User:Clarkjv|Clarkjv]] 18:33, 10 January 2011 (UTC))
 +
 
 +
c) |j| = <math>\sqrt{(0^2+1^2}</math> = 1 ([[User:Clarkjv|Clarkjv]] 18:33, 10 January 2011 (UTC))
 
===Answer 2===
 
===Answer 2===
 
write it here.
 
write it here.
  
<math>|e^(2j)|</math> = <math>\sqrt{(e^2)^2}</math> = <math>e^2</math> ([[User:Clarkjv|Clarkjv]] 18:33, 10 January 2011 (UTC))
+
 
 
===Answer 3===
 
===Answer 3===
 
write it here.
 
write it here.
  
|j| = <math>\sqrt{(0^2+1^2}</math> = 1 ([[User:Clarkjv|Clarkjv]] 18:33, 10 January 2011 (UTC))
+
 
 
----
 
----
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]
 
[[2011_Spring_ECE_301_Boutin|Back to ECE301 Spring 2011 Prof. Boutin]]

Revision as of 15:59, 10 January 2011

Compute the Magnitude of the following Complex Numbers

a) $ e^2 $

b) $ e^{2j} $

c) $ j $

What properties of the complex magnitude can you use to check your answer?


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

a)$ |e^2| $ = $ \sqrt{(e^2)^2} $ = $ e^2 $ (Clarkjv 18:33, 10 January 2011 (UTC))

b) $ |e^(2j)| $ = $ \sqrt{(e^2)^2} $ = $ e^2 $ (Clarkjv 18:33, 10 January 2011 (UTC))

c) |j| = $ \sqrt{(0^2+1^2} $ = 1 (Clarkjv 18:33, 10 January 2011 (UTC))

Answer 2

write it here.


Answer 3

write it here.



Back to ECE301 Spring 2011 Prof. Boutin

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett