Line 15: Line 15:
 
The key to solving the more general problem is to subtract the steady
 
The key to solving the more general problem is to subtract the steady
 
state solution from the solution you are after.  That difference
 
state solution from the solution you are after.  That difference
will satisfy homogeneous (-zero) boundary conditions and you can use the formulas from the book to write the difference.  (Note: be careful about what the intitial conditions are for the difference.)
+
will satisfy homogeneous (=zero) boundary conditions and you can use the formulas from the book to write the difference.  (Note: be careful about what the intitial conditions are for the difference.)
 
+
  
 
Question Page 585, Prob 6:
 
Question Page 585, Prob 6:
Line 28: Line 27:
 
What are the limits of integration for A(p) and B(p) in this problem.  I think it is -infinity to infinity, but I'm not sure if this is correct.
 
What are the limits of integration for A(p) and B(p) in this problem.  I think it is -infinity to infinity, but I'm not sure if this is correct.
  
Answer: see page 508 for a Fourier Integral refresher. You are right that it is -inf to inf.  
+
Answer: see page 508 for a Fourier Integral refresher. You are right that it is -inf to inf.  Sometimes the integrals are zero because the functions inside are odd, and sometimes you can reduce an integral from minus infinity
 +
to infinity to two times one from zero to infinity if the function inside is even.
  
 
Question Page 562, Prob 31:
 
Question Page 562, Prob 31:

Revision as of 05:16, 7 December 2010

Homework 14 collaboration area

Question Page 560, Problem 11:

Are the boundary conditions for this problem u(0,t)=U1 and u(L,t)=U2 or u'(0,t)=U1 and u'(L,t)=U2? I think it is the u' option, but I'm not sure why?

Answer: The problem says that it is fixed at U1 and U2 for all time. I interpret this as X(0)=U1 and X(L)=U2, and X'(0)=X'(L)=0 since they are not changing at those points. Apply these to the X equation after you separate your variables. The T equation will come out the same as before.

RESPONSE: I don't think that X'(0)=X'(L)=0 is correct as problem 10 only mentions that the temperatures are fixed. Making the gradients zero means that the ends are insulated. Now we can have a fixed temperature even if flux is non-zero (if flux in is same as flux out). The part that i am confused about is that while solving X equation we will have non-zero solutions for all values of lambda .. so do we solve three general cases according to lambda values. But the solution at the book's back only mentions a single solution !!.

Hint from Bell: That response is right on. First you need to find the steady state solution to the problem. (If you can't guess that, you can note that the derivative in t would be zero at steady state, so the heat equation becomes u"(x)=0 and the problem is a simple ODE problem.) The key to solving the more general problem is to subtract the steady state solution from the solution you are after. That difference will satisfy homogeneous (=zero) boundary conditions and you can use the formulas from the book to write the difference. (Note: be careful about what the intitial conditions are for the difference.)

Question Page 585, Prob 6:

Can anyone provide some direction on how to start this problem? I'm not really sure how to get started on it.

Answer: I'm not sure about part b, but for part a, differentiate the two given solutions and plug them into formula five to verify that they're solutions. In part c, you're given f(theta), and to solve, you find the fourier coefficients and plug them into (20). Since f(theta) is odd, this is pretty simple.

Question Page 568, Prob 2:

What are the limits of integration for A(p) and B(p) in this problem. I think it is -infinity to infinity, but I'm not sure if this is correct.

Answer: see page 508 for a Fourier Integral refresher. You are right that it is -inf to inf. Sometimes the integrals are zero because the functions inside are odd, and sometimes you can reduce an integral from minus infinity to infinity to two times one from zero to infinity if the function inside is even.

Question Page 562, Prob 31: I am confused regarding the boundary conditions as the problem says that the faces are insulated. However the sides are at 0. So should the B.Cs be X(0)=0, X(24)=0,Y(0)=0 or X'(0)=0, X'(24)=0, Y'(0)=0?

Question Page 560, Prob 7: I am having an issue getting the solution in the back of the book. When I evaluate the integral for Bn using integration by parts, I get Bn = 4/(n^2 pi*2) * sin(n*pi/L). For even values of n, Bn is zero, so I'm not sure where the second term in the answer in the book comes from. Anybody know what I'm doing wrong?


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood