Line 7: Line 7:
 
a6 = 4 + 2 + 2 + 4 = 12<br>
 
a6 = 4 + 2 + 2 + 4 = 12<br>
 
a7 = 8 + 4 + 4 + 4 + 8 = 28<br><br>
 
a7 = 8 + 4 + 4 + 4 + 8 = 28<br><br>
So, from here I can't find the sequence that gives me those numbers.  I believe what's above is right, but if it isn't or there is a better way to look at it, let me know.  Thanks for the help. --[[User:Aoser|Aoser]] 17:09, 15 October 2008 (UTC)
+
So, from here I can't find the sequence that gives me those sums.  I believe what's above is right, but if it isn't or there is a better way to look at it, let me know.  Thanks for the help. --[[User:Aoser|Aoser]] 17:09, 15 October 2008 (UTC)

Revision as of 12:12, 15 October 2008

I need some help writing the recurrence relation for this problem, or problem 30, since they are very similar. I've worked out some solutions and this is what I've got:

a1 = 0
a2 = 0
a3 = 1
a4 = 1 + 1 = 2
a5 = 2 + 1 + 2 = 5
a6 = 4 + 2 + 2 + 4 = 12
a7 = 8 + 4 + 4 + 4 + 8 = 28

So, from here I can't find the sequence that gives me those sums. I believe what's above is right, but if it isn't or there is a better way to look at it, let me know. Thanks for the help. --Aoser 17:09, 15 October 2008 (UTC)

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman