Line 4: Line 4:
 
='''1.2.1 Probability Space'''=
 
='''1.2.1 Probability Space'''=
  
• Probability Space = <math>\left\{ \mathcal{S},\mathcal{F}\left(\mathcal{S}\right),\mathcal{P}\right\}</math>   
+
• Probability Space = <math class="inline">\left\{ \mathcal{S},\mathcal{F}\left(\mathcal{S}\right),\mathcal{P}\right\}</math>   
  
• <math>\mathcal{S}\sim</math>  sample space
+
• <math class="inline">\mathcal{S}\sim</math>  sample space
  
• <math>\mathcal{F}\left(\mathcal{S}\right)\sim</math>  event space , collection of subsets of <math>\mathcal{S}</math>  (including sample space itself)
+
• <math class="inline">\mathcal{F}\left(\mathcal{S}\right)\sim</math>  event space , collection of subsets of <math class="inline">\mathcal{S}</math>  (including sample space itself)
  
• <math>\mathcal{P}\sim</math>  maps <math>\mathcal{F}\left(\mathcal{S}\right)\rightarrow\left[0,1\right]</math>  
+
• <math class="inline">\mathcal{P}\sim</math>  maps <math class="inline">\mathcal{F}\left(\mathcal{S}\right)\rightarrow\left[0,1\right]</math>  
  
 
='''1.2.2 Event space'''=
 
='''1.2.2 Event space'''=
  
• Event space <math>F\left(S\right)</math>  or <math>F</math>  is a non-empty collection of subset of <math>S</math>  satisfying the following three closure properties:
+
• Event space <math class="inline">F\left(S\right)</math>  or <math class="inline">F</math>  is a non-empty collection of subset of <math class="inline">S</math>  satisfying the following three closure properties:
  
1. If <math>A\in F\left(S\right)</math> , then <math>\bar{A}\in F\left(S\right)</math> .
+
1. If <math class="inline">A\in F\left(S\right)</math> , then <math class="inline">\bar{A}\in F\left(S\right)</math> .
  
2. If for some finite <math>n</math> , <math>A_{1},A_{2},\cdots,A_{n}\in F\left(S\right)</math> , then <math>\bigcup_{i=1}^{n}A_{i}\in F\left(S\right)</math> .
+
2. If for some finite <math class="inline">n</math> , <math class="inline">A_{1},A_{2},\cdots,A_{n}\in F\left(S\right)</math> , then <math class="inline">\bigcup_{i=1}^{n}A_{i}\in F\left(S\right)</math> .
  
3. If <math>A_{i}\in F\left(S\right)</math> , <math>i=1,2,\cdots</math> , then <math>\bigcup_{i=1}^{\infty}A_{i}\in F\left(S\right)</math> .
+
3. If <math class="inline">A_{i}\in F\left(S\right)</math> , <math class="inline">i=1,2,\cdots</math> , then <math class="inline">\bigcup_{i=1}^{\infty}A_{i}\in F\left(S\right)</math> .
  
• A set <math>F\left(S\right)</math>  with these 3 properties is called a sigma-field (<math>\sigma</math>-field). If only 1 and 2 are satisfied, we have a field.
+
• A set <math class="inline">F\left(S\right)</math>  with these 3 properties is called a sigma-field (<math class="inline">\sigma</math>-field). If only 1 and 2 are satisfied, we have a field.
  
• It follows from three properties that <math>\varnothing,S\in F\left(S\right)</math> .
+
• It follows from three properties that <math class="inline">\varnothing,S\in F\left(S\right)</math> .
  
– Suppose <math>A\in F\left(S\right)</math> , then <math>\bar{A}\in F\left(S\right)</math> , <math>A\cup\bar{A}=S\in F\left(S\right)</math> , and <math>\bar{S}=\varnothing\in F\left(S\right)</math> .
+
– Suppose <math class="inline">A\in F\left(S\right)</math> , then <math class="inline">\bar{A}\in F\left(S\right)</math> , <math class="inline">A\cup\bar{A}=S\in F\left(S\right)</math> , and <math class="inline">\bar{S}=\varnothing\in F\left(S\right)</math> .
  
• What about intersection? Suppose <math>A,B\in F\left(S\right)</math> . Is <math>A\cap B\in F\left(S\right)</math> ?  
+
• What about intersection? Suppose <math class="inline">A,B\in F\left(S\right)</math> . Is <math class="inline">A\cap B\in F\left(S\right)</math> ?  
  
– <math>A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right)</math> .
+
– <math class="inline">A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right)</math> .
  
 
='''1.2.3 Axioms of probability'''=
 
='''1.2.3 Axioms of probability'''=
  
• The probability measure <math>P\left(\cdot\right)</math>  corresponding to <math>S</math>  and <math>F\left(S\right)</math>  is the assignment of a real number <math>P\left(A\right)</math>  to each <math>A\in F\left(S\right)</math>  satisfying following properties. Axioms of probability:
+
• The probability measure <math class="inline">P\left(\cdot\right)</math>  corresponding to <math class="inline">S</math>  and <math class="inline">F\left(S\right)</math>  is the assignment of a real number <math class="inline">P\left(A\right)</math>  to each <math class="inline">A\in F\left(S\right)</math>  satisfying following properties. Axioms of probability:
  
1. <math>P\left(A\right)\geq0</math> , <math>\forall A\in F\left(S\right)</math> .
+
1. <math class="inline">P\left(A\right)\geq0</math> , <math class="inline">\forall A\in F\left(S\right)</math> .
  
2. <math>P\left(S\right)=1</math> .
+
2. <math class="inline">P\left(S\right)=1</math> .
  
3. If <math>A_{1}</math>  and <math>A_{2}</math>  are disjoint events, then <math>P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)</math> . If <math>A_{1},A_{2}\in F\left(S\right)</math>  and <math>A_{1}\cap A_{2}=\varnothing</math> , then <math>A_{1}</math>  and <math>A_{2}</math>  are disjoint events.
+
3. If <math class="inline">A_{1}</math>  and <math class="inline">A_{2}</math>  are disjoint events, then <math class="inline">P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)</math> . If <math class="inline">A_{1},A_{2}\in F\left(S\right)</math>  and <math class="inline">A_{1}\cap A_{2}=\varnothing</math> , then <math class="inline">A_{1}</math>  and <math class="inline">A_{2}</math>  are disjoint events.
  
4. If <math>A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right)</math>  is a countable collection of disjointed events, then <math>P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right)</math> .
+
4. If <math class="inline">A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right)</math>  is a countable collection of disjointed events, then <math class="inline">P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right)</math> .
  
• <math>P\left(\cdot\right)</math>  is a set function. <math>P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R}</math> .
+
• <math class="inline">P\left(\cdot\right)</math>  is a set function. <math class="inline">P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R}</math> .
  
• If you want to talk about the probability of a single output <math>\omega_{0}\in S</math> , you do so by considering the single event  
+
• If you want to talk about the probability of a single output <math class="inline">\omega_{0}\in S</math> , you do so by considering the single event  
  
 
----
 
----

Latest revision as of 10:21, 30 November 2010

1.2 Probability Space

From the ECE600 Pre-requisites notes of Sangchun Han, ECE PhD student.


1.2.1 Probability Space

• Probability Space = $ \left\{ \mathcal{S},\mathcal{F}\left(\mathcal{S}\right),\mathcal{P}\right\} $

$ \mathcal{S}\sim $ sample space

$ \mathcal{F}\left(\mathcal{S}\right)\sim $ event space , collection of subsets of $ \mathcal{S} $ (including sample space itself)

$ \mathcal{P}\sim $ maps $ \mathcal{F}\left(\mathcal{S}\right)\rightarrow\left[0,1\right] $

1.2.2 Event space

• Event space $ F\left(S\right) $ or $ F $ is a non-empty collection of subset of $ S $ satisfying the following three closure properties:

1. If $ A\in F\left(S\right) $ , then $ \bar{A}\in F\left(S\right) $ .

2. If for some finite $ n $ , $ A_{1},A_{2},\cdots,A_{n}\in F\left(S\right) $ , then $ \bigcup_{i=1}^{n}A_{i}\in F\left(S\right) $ .

3. If $ A_{i}\in F\left(S\right) $ , $ i=1,2,\cdots $ , then $ \bigcup_{i=1}^{\infty}A_{i}\in F\left(S\right) $ .

• A set $ F\left(S\right) $ with these 3 properties is called a sigma-field ($ \sigma $-field). If only 1 and 2 are satisfied, we have a field.

• It follows from three properties that $ \varnothing,S\in F\left(S\right) $ .

– Suppose $ A\in F\left(S\right) $ , then $ \bar{A}\in F\left(S\right) $ , $ A\cup\bar{A}=S\in F\left(S\right) $ , and $ \bar{S}=\varnothing\in F\left(S\right) $ .

• What about intersection? Suppose $ A,B\in F\left(S\right) $ . Is $ A\cap B\in F\left(S\right) $ ?

$ A\cap B=\overline{\overline{A\cap B}}=\overline{\overline{A}\cup\overline{B}}\in F\left(S\right) $ .

1.2.3 Axioms of probability

• The probability measure $ P\left(\cdot\right) $ corresponding to $ S $ and $ F\left(S\right) $ is the assignment of a real number $ P\left(A\right) $ to each $ A\in F\left(S\right) $ satisfying following properties. Axioms of probability:

1. $ P\left(A\right)\geq0 $ , $ \forall A\in F\left(S\right) $ .

2. $ P\left(S\right)=1 $ .

3. If $ A_{1} $ and $ A_{2} $ are disjoint events, then $ P\left(A_{1}\cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right) $ . If $ A_{1},A_{2}\in F\left(S\right) $ and $ A_{1}\cap A_{2}=\varnothing $ , then $ A_{1} $ and $ A_{2} $ are disjoint events.

4. If $ A_{1},A_{2},\cdots,A_{n},\cdots\in F\left(S\right) $ is a countable collection of disjointed events, then $ P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P\left(A_{i}\right) $ .

$ P\left(\cdot\right) $ is a set function. $ P\left(\cdot\right):F\left(S\right)\rightarrow\mathbf{R} $ .

• If you want to talk about the probability of a single output $ \omega_{0}\in S $ , you do so by considering the single event


Back to ECE600

Back to ECE 600 Prerequisites

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett