m
Line 26: Line 26:
 
* [[ECE438_Week14_Quiz_Q2sol|Solution]].
 
* [[ECE438_Week14_Quiz_Q2sol|Solution]].
 
----
 
----
 +
Q3. Consider a 3 * 3 FIR filter with coefficients h[m, n]
 +
 +
[[Image:Q3_table.jpg]]
 +
 +
a. Find a difference equation that can be used to implement this filter.
 +
 +
b. Given an input image, find the center pixel value of output image.
 +
 +
[[Image:Q3_inputimg.jpg]]
 +
 +
c. Find a simple expression for the frequency response (DSFT) H(u,v) of this filter.
 +
 +
d. Plot H(u,v) along the u axis (v = 0) , along the v axis (u = 0) , along the line u = v , and along the line u = -v.
 +
 +
* [[ECE438_Week14_Quiz_Q3sol|Solution]].
 +
----
 +
  
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
 
Back to [[ECE438_Lab_Fall_2010|ECE 438 Fall 2010 Lab Wiki Page]]
  
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]
 
Back to [[2010_Fall_ECE_438_Boutin|ECE 438 Fall 2010]]

Revision as of 09:50, 29 November 2010

Quiz Questions Pool for Week 14


Q1. Assume we know (or can measure) a function

$ \begin{align} p(x) &= \int_{-\infty}^{\infty}f(x,y)dy \end{align} $

Using the definition of the CSFT, derive an expression for F(u,0) in terms of the function p(x).


Q2. Consider the following 2D system with input x(m,n) and output y(m,n)

$ y(m,n) = x(m,n) + \lambda \left( x(m,n) - \frac{1}{9} \sum_{k=-1}^{1}\sum_{l=-1}^{1}x(m-k,n-l) \right) $

a. Is this a linear system? Is it space invariant?
b. What is the 2D impulse response of this system?
c. Calculate its frequency response H(u,v).
d. Describe how the filter behaves when $ \lambda $ is positive and large.
e. Describe how the filter behaves when $ \lambda $ is negative and bigger than -1.


Q3. Consider a 3 * 3 FIR filter with coefficients h[m, n]

Q3 table.jpg

a. Find a difference equation that can be used to implement this filter.

b. Given an input image, find the center pixel value of output image.

Q3 inputimg.jpg

c. Find a simple expression for the frequency response (DSFT) H(u,v) of this filter.

d. Plot H(u,v) along the u axis (v = 0) , along the v axis (u = 0) , along the line u = v , and along the line u = -v.



Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva