Line 13: Line 13:
 
<br>  
 
<br>  
  
Let ''A'' and ''B'' be ''n × n'' matrices and ''I''<sub>''n''</sub> be the ''n × n'' identity matrix
+
Let ''A'' and ''B'' be ''n × n'' matrices and ''I''<sub>''n''</sub> be the ''n × n'' identity matrix<br>  
 
+
<br>  
+
  
 
A is invertible or nonsingular and B is its inverse if:  
 
A is invertible or nonsingular and B is its inverse if:  
Line 44: Line 42:
  
  
 
+
If the above condition is not met, and the determinant of matrix ''A'' is 0, then it is called '''singular '''or '''noninvertible'''.
  
 
[[Category:MA265Fall2010Walther]]
 
[[Category:MA265Fall2010Walther]]

Revision as of 14:27, 27 November 2010

The Inverse of a Matrix

In linear algebra, the study of matrices is one of the fundamental basis of this subject. One of the concepts within this study, is the notion of an invertible or nonsingular matrix.


Definition

A square matrix is said to be invertible or nonsingular, if when multiplied by another similar matrix, the result yields the identity matrix.


Let A and B be n × n matrices and In be the n × n identity matrix

A is invertible or nonsingular and B is its inverse if:


$ \begin{align} & AB=BA={{I}_{n}} \\ & \\ & \overbrace{\left( \begin{matrix} {{a}_{11}} & {{a}_{12}} & \cdots & {{a}_{1n}} \\ {{a}_{21}} & {{a}_{22}} & \cdots & {{a}_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ {{a}_{n1}} & {{a}_{n2}} & \cdots & {{a}_{nn}} \\ \end{matrix} \right)}^{A}\overbrace{\left( \begin{matrix} {{b}_{11}} & {{b}_{12}} & \cdots & {{b}_{1n}} \\ {{b}_{21}} & {{b}_{22}} & \cdots & {{b}_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ {{b}_{n1}} & {{b}_{n2}} & \cdots & {{b}_{nn}} \\ \end{matrix} \right)}^{B}=\overbrace{\left( \begin{matrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \end{matrix} \right)}^{{{I}_{n}}} \\ \end{align} $


If the above condition is not met, and the determinant of matrix A is 0, then it is called singular or noninvertible.

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett