(New page: {| |- ! style="background: none repeat scroll 0% 0% rgb(228, 188, 126); font-size: 110%;" colspan="2" | Z Transform Pairs and Properties |- ! style="background: none repeat scroll 0% 0% rg...) |
|||
Line 19: | Line 19: | ||
! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | Z Transform Pairs | ! style="background: none repeat scroll 0% 0% rgb(238, 238, 238);" colspan="4" | Z Transform Pairs | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
− | | < | + | | Signal <math> x[n] </math> |
− | | | + | | |
− | | <math> X( | + | | Transform <math> X(z) </math> |
+ | | | ||
+ | | ROC | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Unit impulse signal |
− | | <math>\delta | + | | <math> \delta[n]\ </math> |
| | | | ||
− | | <math> 1 \ | + | | <math> 1\ </math> |
+ | | | ||
+ | | <math> All\ z\ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Unit step signal |
− | | <math> | + | | <math> u[n]\ </math> |
| | | | ||
− | | <math> | + | | <math> \frac{1}{1-z^{-1}} </math> |
+ | | | ||
+ | | <math> |z| > 1\ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | |
− | | <math> | + | | <math> -u[-n-1]\ </math> |
| | | | ||
− | | <math> | + | | <math> \frac{1}{1-z^{-1}} </math> |
| | | | ||
+ | | <math> |z| < 1\ </math> | ||
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | Shifted unit impulse signal |
− | | <math> | + | | <math> \delta[n-m]\ </math> |
| | | | ||
− | | <math> | + | | <math> z^{-m}\ </math> |
| | | | ||
+ | | <math> All\ z, except\ 0\ (if\ m>0)\ or\\ \infty \ (if\ m<0)\ </math> | ||
|- | |- | ||
| align="right" style="padding-right: 1em;" | | | align="right" style="padding-right: 1em;" | |
Revision as of 11:51, 27 November 2010
Z Transform Pairs and Properties | |
---|---|
Definition Z Transform and its Inverse | |
Single-side Z Transform | $ X(z)=\mathcal{L}(x[n])=\sum^{\infty}_{n=0}x[n]z^{-n} $ |
Double-side Z Transform | $ X(z)=\mathcal{L}(x[n])=\sum_{n=-\infty}^{\infty}x[n]z^{-n} $ |
Inverse Z Transform | $ x[n]=\mathcal{L}^{-1}(X(z))=\frac{1}{2\pi j}\oint_{c}X(z)z^{n-1}dz $ |
Z Transform Pairs | |||||
---|---|---|---|---|---|
Signal $ x[n] $ | Transform $ X(z) $ | ROC | |||
Unit impulse signal | $ \delta[n]\ $ | $ 1\ $ | $ All\ z\ $ | ||
Unit step signal | $ u[n]\ $ | $ \frac{1}{1-z^{-1}} $ | $ |z| > 1\ $ | ||
$ -u[-n-1]\ $ | $ \frac{1}{1-z^{-1}} $ | $ |z| < 1\ $ | |||
Shifted unit impulse signal | $ \delta[n-m]\ $ | $ z^{-m}\ $ | $ All\ z, except\ 0\ (if\ m>0)\ or\\ \infty \ (if\ m<0)\ $ | ||
$ te^{-at}u(t)\ $, where $ a\in {\mathbb R}, a>0 $ | $ \left( \frac{1}{a+i2\pi f}\right)^2 $ | ||||
CTFT of a cosine | $ \cos(\omega_0 t) \ $ | $ \frac{1}{2} \left[\delta (f - \frac{\omega_0}{2\pi}) + \delta (f + \frac{\omega_0}{2\pi})\right] \ $ | |||
CTFT of a sine | $ sin(\omega_0 t) \ $ | $ \frac{1}{2i} \left[\delta (f - \frac{\omega_0}{2\pi}) - \delta (f + \frac{\omega_0}{2\pi})\right] $ | |||
CTFT of a rect | $ \left\{\begin{array}{ll}1, & \text{ if }|t|<T,\\ 0, & \text{else.}\end{array} \right. \ $ | $ \frac{\sin \left(2\pi Tf \right)}{\pi f} \ $ | |||
CTFT of a sinc | $ \frac{2 \sin \left( W t \right)}{\pi t } \ $ | $ \left\{\begin{array}{ll}1, & \text{ if }|f| <\frac{W}{2\pi},\\ 0, & \text{else.}\end{array} \right. \ $ | |||
CTFT of a periodic function | $ \sum^{\infty}_{k=-\infty} a_{k}e^{ikw_{0}t} $ | $ \sum^{\infty}_{k=-\infty}a_{k}\delta(f-\frac{kw_{0}}{2\pi}) \ $ | |||
CTFT of an impulse train | $ \sum^{\infty}_{n=-\infty} \delta(t-nT) \ $ | $ \frac{1}{T}\sum^{\infty}_{k=-\infty}\delta(f-\frac{k}{T}) \ $ |
CT Fourier Transform Properties | |||
---|---|---|---|
x(t) | $ \longrightarrow $ | $ X(f) $ | |
multiplication property | $ x(t)y(t) \ $ | $ X(f)*Y(f) =\int_{-\infty}^{\infty} X(\theta)Y(f-\theta)d\theta $ | |
convolution property | $ x(t)*y(t) \! $ | $ X(f)Y(f) \! $ | |
time reversal | $ \ x(-t) $ | $ \ X(-f) $ |
Other CT Fourier Transform Properties | |
---|---|
Parseval's relation | $ \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df $ |