(New page: {| |- ! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initia...)
 
Line 5: Line 5:
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Length
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Length
 
|-
 
|-
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring)
+
|<math>
| <math>\,P(A^c) = 1 - P(A)\,</math>
+
\begin{array}{lcl}
|-
+
1 \mbox{ kilometer (km) } & = & 1000 \mbox{ meter (m) } \\
| align="right" style="padding-right: 1em;" | The intersection of two independent events A and B
+
1 \mbox{ meter (m) } & = & 109 \mbox{ centimeter (cm) } \\
| <math>\,P(A \mbox{ and }B) =  P(A \cap B) = P(A) P(B)\,</math>
+
1 \mbox{ centimeter (cm) } & = & 10^{-2} \mbox{ m } \\
 +
1 \mbox{ millimeter (mm) } & = & 10^{-3} \mbox{ m } \\
 +
 
 +
  1 \mbox{ millimicron} ( m \mu ) & = & 10^{-9} \mbox{ m } \\
 +
1 \mbox{ angstrom (A) } & = & 10^{-10} \mbox{ m } \\
 +
\end{array}
 +
</math>
 
|-
 
|-
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Surface
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Surface

Revision as of 14:41, 23 November 2010

Conversion Factors
Length
$ \begin{array}{lcl} 1 \mbox{ kilometer (km) } & = & 1000 \mbox{ meter (m) } \\ 1 \mbox{ meter (m) } & = & 109 \mbox{ centimeter (cm) } \\ 1 \mbox{ centimeter (cm) } & = & 10^{-2} \mbox{ m } \\ 1 \mbox{ millimeter (mm) } & = & 10^{-3} \mbox{ m } \\ 1 \mbox{ millimicron} ( m \mu ) & = & 10^{-9} \mbox{ m } \\ 1 \mbox{ angstrom (A) } & = & 10^{-10} \mbox{ m } \\ \end{array} $
Surface
Binomial random variable with parameters n and p $ \,E[X] = np,\ \ Var(X) = np(1-p)\, $
Poisson random variable with parameter $ \lambda $ $ \,E[X] = \lambda,\ \ Var(X) = \lambda\, $
Exponential random variable with parameter $ \lambda $ $ \,E[X] = \frac{1}{\lambda},\ \ Var(X) = \frac{1}{\lambda^2}\, $

Back to Collective Table

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang