Line 204: Line 204:
 
|<math> \vert x \vert < { \pi \over 2} </math>
 
|<math> \vert x \vert < { \pi \over 2} </math>
 
|-
 
|-
 
+
|<math> e^x \sin x = x + x^2 + {2x^3 \over 3 } - {x^5 \over 30} - {x^6 \over 90} + \cdots + \frac{2^{n/2} \sin (n \pi /4)\ x^n}{n!} + \cdots</math>
 
+
|<math> - \infty < x < \infty</math>
 +
|-
 +
|<math> e^x \cos x = 1 + x - {x^3 \over 3 } - {x^4 \over 6} + \cdots + \frac{2^{n/2} \cos (n \pi /4)\ x^n}{n!} + \cdots</math>
 +
|<math> - \infty < x < \infty</math>
 +
|-
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Series of Reciprocal Power Series
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Series of Reciprocal Power Series
 
|-
 
|-

Revision as of 11:22, 23 November 2010

Power Series Formulas
Series in symbolic forms
Taylor Series in one variable $ \sum_{n=0} ^ {\infin } \frac {f^{(n)}(a)}{n!} \, (x-a)^{n} $
Taylor Series in d variables

$ =\sum_{n_1=0}^{\infin} \cdots \sum_{n_d=0}^{\infin} \frac{(x_1-a_1)^{n_1}\cdots (x_d-a_d)^{n_d}}{n_1!\cdots n_d!}\,\left(\frac{\partial^{n_1 + \cdots + n_d}f}{\partial x_1^{n_1}\cdots \partial x_d^{n_d}}\right)(a_1,\dots,a_d).\! $

Taylor Series of certain functions
exponential $ e^x = \sum_{n=0}^\infty \frac{x^n}{n!}, $ $ \text{ for all } x\in {\mathbb C}\ $
logarithm

$ \ln(1+x) = \sum^{\infin}_{n=1} (-1)^{n+1}\frac{x^n}n,\text{ when }-1<x\le1 $

Geometric Series and related series
(info) Finite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1-x^{n+1}}{1-x}&, \text{ if } x\neq 1\\ n+1 &, \text{ else}\end{array}\right. $
(info) Infinite Geometric Series Formula $ \sum_{k=0}^n x^k = \left\{ \begin{array}{ll} \frac{1}{1-x}&, \text{ if } |x|\leq 1\\ \text{diverges} &, \text{ else }\end{array}\right. $
$ \frac{x^m}{1-x} = \sum^{\infin}_{n=m} x^n\quad\mbox{ for }|x| < 1 \text{ and } m\in\mathbb{N}_0\! $

$ \frac{x}{(1-x)^2} = \sum^{\infin}_{n=1}n x^n\quad\text{ for }|x| < 1\! $

Other Series
notes/name equation
Taylor series of Single Variable Functions
$ \,f(x) \ = \ f(a) \ + \ f'(a)(x \ - \ a) \ + \ \frac{f''(a)(x-a)^2}{2!} \ + \ \cdot \cdot \cdot \ + \ \frac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!} \ + \ R_n \, $
$ \text{Rest of Lagrange } \qquad R_n = \frac {f^{(n)}(\zeta)(x-a)^n}{n!} $
$ \text{Rest of Cauchy } \qquad R_n = \frac {f^{(n)}(\zeta)(x-\zeta)^{n-1}(x-a)}{(n-1)!} $
Binomial Series
$ \begin{align} (a+x)^n & = a^n + na^{n-1}x + \frac {n(n-1)}{2!} a^{n-2}x^2 + \frac {n(n-1)(n-2)}{3!} a^{n-3}x^3 + \cdot \cdot \cdot \\ & = a^n + \binom{n}{1} a^{n-1}x + \binom{n}{2} a^{n-2}x^2 + \binom{n}{3} a^{n-3}x^3 + \cdot \cdot \cdot \\ \end{align} $
Some particular Cases:
$ (a+x)^2 \ = \ a^2 \ + \ 2ax \ + \ x^2 $
$ (a+x)^3 \ = \ a^3 \ + \ 3a^2x \ + \ 3ax^2 \ + \ x^3 $
$ (a+x)^4 \ = \ a^4 \ + \ 4a^3x \ + \ 6a^2x^2 \ + \ 4ax^3 \ + \ x^4 $
$ (a+x)^{-1} \ = \ 1 \ - \ x \ + \ x^2 \ - \ x^3 \ + \ x^4 \ - \ \cdot \cdot \cdot $ $ -1 < x < 1 \qquad $
$ (a+x)^{-2} \ = \ 1 \ - \ 2x \ + \ 3x^2 \ - \ 4x^3 \ + \ 5x^4 \ - \ \cdot \cdot \cdot $ $ -1 < x < 1 \qquad $
$ (a+x)^{-3} \ = \ 1 \ - \ 3x \ + \ 6x^2 \ - \ 10x^3 \ + \ 15x^4 \ - \ \cdot \cdot \cdot $ $ -1 < x < 1 \qquad $
$ (a+x)^{-1/2} \ = \ 1 \ - \ \frac{1}{2}x \ + \ \frac{1 \bullet 3}{2 \bullet 4}x^2 \ - \ \frac {1 \bullet 3 \bullet 5 }{2 \bullet 4 \bullet 6} x^3 \ + \ \cdot \cdot \cdot $ $ -1 < x \leqq 1 \qquad $
$ (a+x)^{1/2} \ = \ 1 \ + \ \frac{1}{2}x \ - \ \frac{1 }{2 \bullet 4}x^2 \ + \ \frac {1 \bullet 3 }{2 \bullet 4 \bullet 6} x^3 \ - \ \cdot \cdot \cdot $ $ -1 < x \leqq 1 \qquad $
$ (a+x)^{-1/3} \ = \ 1 \ - \ \frac{1}{3}x \ + \ \frac{1 \bullet 4}{3 \bullet 6}x^2 \ - \ \frac {1 \bullet 4 \bullet 7 }{3 \bullet 6 \bullet 9} x^3 \ + \ \cdot \cdot \cdot $ $ -1 < x \leqq 1 \qquad $
$ (a+x)^{1/3} \ = \ 1 \ + \ \frac{1}{3}x \ - \ \frac{2}{3 \bullet 6}x^2 \ + \ \frac {2 \bullet 5 }{3 \bullet 6 \bullet 9} x^3 \ - \ \cdot \cdot \cdot $ $ -1 < x \leqq 1 \qquad $
Series Expansion of Exponential functions and Logarithms
$ e^x \ = \ 1 \ + \ x \ + \ \frac{x^2}{2!} \ + \ \frac{x^3}{3!} \ + \ \cdots $ $ - \infty < x < \infty \qquad $
$ a^x \ = \ e^{x \ln a} \ = \ 1 \ + \ x \ln a \ + \ \frac{(x \ln a)^2}{2!} \ + \ \frac{(x \ln a)^3}{3!} \ + \ \cdots $ $ - \infty < x < \infty \qquad $
$ \ln(1+x) \ = \ x \ - \ \frac{x^2}{2} \ + \ \frac{x^3}{3} \ - \ \frac{x^4}{4} \ + \ \cdots $ $ -1 < x \leqq 1 \qquad $
$ \frac{1}{2} \ln \left ( \frac {1+x}{1-x} \right ) \ = \ x \ + \ \frac{x^3}{3} \ + \ \frac {x^5}{5} \ + \ \frac{x^7}{7} \ + \ \cdots \ $ $ -1 < x < 1 \qquad $
$ \ln x \ = \ 2 \left \{ \left ( \frac {x-1}{x+1} \right ) \ + \ \frac{1}{3} \left ( \frac {x-1}{x+1} \right ) ^3 \ + \ \frac{1}{5} \left ( \frac{x-1}{x+1} \right ) ^ 5 \ + \ \cdots \ \right \} $ $ x > 0 \qquad $
$ \ln x \ = \ \left ( \frac {x-1}{x} \right ) \ + \ \frac{1}{2} \left ( \frac {x-1}{x} \right ) ^2 \ + \ \frac{1}{3} \left ( \frac{x-1}{x} \right ) ^ 3 \ + \ \cdots \ $ $ x \geqq \frac {1}{2} \qquad $
Series Expansion of Circular functions
$ \sin x \ = \ x \ - \ \frac{x^3}{3!} \ + \ \frac{x^5}{5!} \ - \ \frac{x^7}{7!} \ + \ \cdots \ $ $ - \infty < x < \infty \qquad $
$ \cos x \ = \ 1 \ - \ \frac{x^2}{2!} \ + \ \frac{x^4}{4!} \ - \ \frac{x6}{6!} \ + \ \cdots $ $ - \infty < x < \infty \qquad $
$ \cot x \ = \ \frac{1}{x} \ - \ \frac {x}{3} \ - \ \frac{x^3}{45} \ - \ \frac{2x^5}{945} \ - \ \cdots \ - \ \frac{2^{2n}B_n x^{2n-1}}{(2n)!} \ - \ \cdots $ $ 0 < \left \vert x \right \vert < \pi \qquad $
$ \frac{1}{\cos x} \ = \ 1 \ + \ \frac {x^2}{2} \ + \ \frac{x^4}{24} \ + \ \frac{61x^6}{720} \ + \ \cdots \ - \ \frac{E_n x^{2n}}{(2n)!} \ + \ \cdots $ $ \left \vert x \right \vert < \frac {\pi}{2} \qquad $
$ \frac{1}{\sin x} \ = \ \frac{1}{x} \ + \ \frac {x}{6} \ + \ \frac{7x^3}{360} \ + \ \frac{31x^5}{15,120} \ + \ \cdots \ + \ \frac{2(2^{2n-1}-1)B_n x^{2n-1}}{(2n)!} \ + \ \cdots $ $ 0 < \left \vert x \right \vert < \pi \qquad $
$ \arcsin x = x + {1 \over 2}{x^3 \over 3} + \frac{1 \bullet 3}{ 2 \bullet 4} {x^5 \over 5} + \frac {1 \bullet 3 \bullet 5}{ 2 \bullet 4 \bullet 6}{x^7 \over 7} + \cdots $ $ \left \vert x \right \vert < 1 \qquad $
$ \arccos x = {\pi \over 2} - \sin ^{-1} x = {\pi \over 2} - \left ( x + {1 \over 2}{x^3 \over 3} +\frac{1 \bullet 3}{2 \bullet 4} {x^5 \over 5} + \cdots \ \right ) $ $ \left \vert x \right \vert < 1 \qquad $
$ \arctan x = \begin{cases} x - {x^3 \over 3} + {x^5 \over 5} - { x^7 \over 7} + \cdots & \qquad \left \vert x \right \vert < 1 \\ \pm {\pi \over 2} - {1 \over x} + {1 \over 3x^3} - {1 \over 5x^5} + \cdots & \qquad [ + \mbox{ if } x \geqq 1 , - \mbox{ if } x \leqq -1 \ ] \\ \end{cases} $
$ \arccot x = {\pi \over 2} - \arctan x = \begin{cases} {\pi \over 2} - \left ( x - {x^3 \over 3} + {x^5 \over 5} - \cdots \right ) & \qquad \qquad \qquad \qquad \left \vert x \right \vert < 1 \\ p {\pi} + {1 \over x} - {1 \over 3x^3} + {1 \over 5x^5} - \cdots & \qquad \qquad [ p = 0 \mbox{ if } x > 1 , p=1 \mbox{ if } x < -1 \ ] \\ \end{cases} $
$ \arccos ({1 \over x}) = {\pi \over 2} - \left ( {1 \over x} + \frac{1}{2 \bullet 3 x^3} + \frac{1 \bullet 3}{2 \bullet 4 \bullet 5 x^5} + \cdots \right ) $ $ \left \vert x \right \vert > 1 \qquad $
$ \arcsin ({1 \over x}) = {1 \over x} + {1 \over 2 \bullet 3 x^3} + \frac{1 \bullet 3}{2 \bullet 4 \bullet 5 x^5} + \cdots $ $ \left \vert x \right \vert > 1 \qquad $
Series Expansion of Hyperbolic functions
$ \, \operatorname{sh}\, x = x + {x^3 \over 3!} + {x^5 \over 5!} + { x^7 \over 7!} + \cdots\, $ $ - \infty < x < \infty \qquad $
$ \, \operatorname{ch}\, x = 1 + {x^2 \over 2!} + {x^4 \over 4!} + { x^6 \over 6!} + \cdots\, $ $ - \infty < x < \infty \qquad $
$ \, \operatorname{th}\, x = x - {x^3 \over 3} + {2x^5 \over 15} - { 17x^7 \over 315} + \cdots \ \frac{(-1)^{n-1}2^{2n}(2^{2n} -1)B_nx^{2n-1}}{(2n)!} + \cdots\, $ $ \vert x \vert < {\pi \over 2} \qquad $
$ \, \coth \, x = {1 \over x} + {x \over 3} - {x^3 \over 45} + { 2x^5 \over 945} + \cdots \frac{(-1)^{n-1}2^{2n}b_nx^{2n-1}}{(2n)!} + \cdots\, $ $ 0 < \vert x \vert < \pi \qquad $
$ \frac {1}{\operatorname{ch}\, x} = 1 - {x2 \over 2} + {5x^4 \over 24} -{61x^6 \over 720} + \cdots \frac{(-1)^nE_nx^{2n}}{(2n)!} + \cdots $ $ \vert x \vert < {\pi \over 2} $
$ \frac{1}{\operatorname{sh}\, x} = {1 \over x} - {x \over 6} + {7x^3 \over 360} - {31x^5 \over 15,120} + \cdots \frac{(-1)^n2(2^{2n-1}-1)B_nx^{2n-1}}{(2n)!} + \cdots $ $ 0 < \vert x \vert < \pi $
$ \operatorname{argsh}\,x = \begin{cases} x - {x^3 \over 2 \bullet 3} + {1 \bullet 3 x^5 \over 2 \bullet 4 \bullet 5} - {1 \bullet 3 \bullet 5 x^7 \over 2 \bullet 4 \bullet 6 \bullet 7} + \cdots & \qquad \qquad \qquad \qquad \left \vert x \right \vert < 1 \\ \pm \left ( \ln \vert 2x \vert + {1 \over 2 \bullet 2 x^2} - {1 \bullet 3 \over 2 \bullet 4 \bullet 4x^4} + {1 \bullet 3 \bullet 5 \over 2 \bullet 4 \bullet 6 \bullet 6x^6} - \cdots \right )& \qquad \qquad \left [ \begin{matrix} + \ if \ x \geqq 1 \\ - \ if \ x \leqq -1 \end{matrix} \ \right ] \end{cases} $
$ \operatorname{argch} \,x = \pm \left \{ \ln (2x) - \left ( \frac{1}{2 \bullet 2x^2} + \frac{1 \bullet 3}{2 \bullet 4 \bullet 4x^4} + \frac { 1 \bullet 3 \bullet 5}{2 \bullet 4 \bullet 6 \bullet 6x^6} + \cdots \right ) \right \} \left [ \begin{matrix} + \ if \ \operatorname{argsh}\,x > 0, x \geqq 1 \\ - \ if \ \operatorname{argsh}\,x < 0, x \geqq 1 \end{matrix} \ \right ] $
$ \operatorname{argth} \,x = x + { x^3 \over 5} + {x^5 \over 5 } + {x^7 \over 7 }+ \cdots $ $ \vert x \vert < 1 \qquad $
$ \operatorname{argcoth} \,x = {1 \over x} + { 1 \over 3x^3} + {1 \over 5x^5 } + {1 \over 7x^7 }+ \cdots $ $ \vert x \vert > 1 \qquad $
Various Series
$ \, e^{\sin x} = 1 + x + {x^2 \over 2} - {x^4 \over 8} - {x^5 \over 15} + \cdots\, $ $ - \infty < x < \infty $
$ \, e^{\cos x} = e \left ( 1 - {x^2 \over 2} + {x^4 \over 6} - {31x^6 \over 720} + \cdots \right ) \, $ $ - \infty < x < \infty $
$ \, e^{\tan x} = 1 + x + {x^2 \over 2} + {x^3 \over 2} + {3x^4 \over 8} + \cdots \, $ $ \vert x \vert < { \pi \over 2} $
$ e^x \sin x = x + x^2 + {2x^3 \over 3 } - {x^5 \over 30} - {x^6 \over 90} + \cdots + \frac{2^{n/2} \sin (n \pi /4)\ x^n}{n!} + \cdots $ $ - \infty < x < \infty $
$ e^x \cos x = 1 + x - {x^3 \over 3 } - {x^4 \over 6} + \cdots + \frac{2^{n/2} \cos (n \pi /4)\ x^n}{n!} + \cdots $ $ - \infty < x < \infty $
Series of Reciprocal Power Series
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
Taylor Series of Two Variables function
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $

Back to Collective Table

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics