(New page: ==7.12 QE 2006 August== 1 Let <math>\mathbf{U}_{n}</math> be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence <math>\m...)
 
Line 46: Line 46:
  
 
<math>\mathbf{I}=\left\{ \begin{array}{lll}
 
<math>\mathbf{I}=\left\{ \begin{array}{lll}
1 &  & \textrm{if }\mathbf{Z}\leq\mathbf{X}\\
+
1 &  & \text{if }\mathbf{Z}\leq\mathbf{X}\\
0 &  & \textrm{if }\mathbf{Z}>\mathbf{X}.
+
0 &  & \text{if }\mathbf{Z}>\mathbf{X}.
 
\end{array}\right.</math>  
 
\end{array}\right.</math>  
  
Line 64: Line 64:
 
3 (15 points)
 
3 (15 points)
  
Let \mathbf{Y}(t)  be the output of linear system with impulse response h\left(t\right)  and input \mathbf{X}\left(t\right)+\mathbf{N}\left(t\right) , where \mathbf{X}\left(t\right)  and \mathbf{N}\left(t\right)  are jointly wide-sense stationary independent random processes. If \mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right) , find the power spectral density S_{\mathbf{Z}}\left(\omega\right)  in terms of S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right] , and m_{\mathbf{Y}}=E\left[\mathbf{Y}\right] .
+
Let <math>\mathbf{Y}(t)</math> be the output of linear system with impulse response <math>h\left(t\right)</math> and input <math>\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right)</math> , where <math>\mathbf{X}\left(t\right)</math> and <math>\mathbf{N}\left(t\right)</math> are jointly wide-sense stationary independent random processes. If <math>\mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right)</math> , find the power spectral density <math>S_{\mathbf{Z}}\left(\omega\right)</math> in terms of <math>S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right] , and m_{\mathbf{Y}}=E\left[\mathbf{Y}\right]</math> .
  
 
Solution
 
Solution
  
Let \mathbf{M}\left(t\right)=\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right) . Since \mathbf{X}\left(t\right)  and \mathbf{N}\left(t\right)  are jointly wide-sense stationary. \mathbf{M}\left(t\right)  is also a wide-sense stationary random process. \mathbf{Y}\left(t\right)=\mathbf{M}\left(t\right)*h\left(t\right). R_{\mathbf{Y}}\left(\tau\right)=\left(R_{\mathbf{M}}*h*\widetilde{h}\right)\left(\tau\right)\textrm{ where }\left(\widetilde{h}\left(t\right)=h\left(-t\right)\right). R_{\mathbf{M}}\left(\tau\right) R_{\mathbf{XY}}\left(\tau\right)  
+
Let <math>\mathbf{M}\left(t\right)=\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right)</math> . Since <math>\mathbf{X}\left(t\right)</math> and <math>\mathbf{N}\left(t\right)</math> are jointly wide-sense stationary. <math>\mathbf{M}\left(t\right)</math> is also a wide-sense stationary random process.  
 +
 
 +
<math>\mathbf{Y}\left(t\right)=\mathbf{M}\left(t\right)*h\left(t\right).</math>
 +
 
 +
<math>R_{\mathbf{Y}}\left(\tau\right)=\left(R_{\mathbf{M}}*h*\widetilde{h}\right)\left(\tau\right)\text{ where }\left(\widetilde{h}\left(t\right)=h\left(-t\right)\right).</math>
 +
 
 +
<math>R_{\mathbf{M}}\left(\tau\right) R_{\mathbf{XY}}\left(\tau\right)</math>
  
 
R_{\mathbf{Z}}\left(\tau\right) S_{\mathbf{Z}}\left(\omega\right) \because m_{\mathbf{Y}}=m_{\mathbf{M}}*h\left(t\right)=\int_{-\infty}^{\infty}\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)h\left(t\right)dt=\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)H\left(0\right)\Rightarrow m_{\mathbf{N}}H\left(0\right)=m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right).  
 
R_{\mathbf{Z}}\left(\tau\right) S_{\mathbf{Z}}\left(\omega\right) \because m_{\mathbf{Y}}=m_{\mathbf{M}}*h\left(t\right)=\int_{-\infty}^{\infty}\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)h\left(t\right)dt=\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)H\left(0\right)\Rightarrow m_{\mathbf{N}}H\left(0\right)=m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right).  

Revision as of 07:26, 23 November 2010

7.12 QE 2006 August

1

Let $ \mathbf{U}_{n} $ be a sequence of independent, identically distributed zero-mean, unit-variance Gaussian random variables. The sequence $ \mathbf{X}_{n} $ , $ n\geq1 $ , is given by $ \mathbf{X}_{n}=\frac{1}{2}\mathbf{U}_{n}+\left(\frac{1}{2}\right)^{2}\mathbf{U}_{n-1}+\cdots+\left(\frac{1}{2}\right)^{n}\mathbf{U}_{1}. $

(a) (15 points)

Find the mean and variance of $ \mathbf{X}_{n} $ .

i) Find $ E\left[\mathbf{X}_{n}\right] $

$ \mathbf{X}_{n}=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}. E\left[\mathbf{X}_{n}\right]=E\left(\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}\right)=\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}E\left[\mathbf{U}_{n-k}\right]=0. $

ii) Find $ E\left[\mathbf{X}_{n}^{2}\right] $

$ E\left[\mathbf{X}_{n}^{2}\right]=E\left[\left(\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\mathbf{U}_{n-k}\right)^{2}\right]=E\left[\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}\mathbf{U}_{n-k}\mathbf{U}_{n-j}\right] $$ =E\left[\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}\mathbf{U}_{n-k}^{2}+\underset{k\neq j}{\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}\mathbf{U}_{n-k}\mathbf{U}_{n-j}\right] $$ =\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}E\left[\mathbf{U}_{n-k}^{2}\right]+\underset{k\neq j}{\sum_{k=0}^{n-1}\sum_{j=0}^{n-1}}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{2}\right)^{j+1}E\left[\mathbf{U}_{n-k}\right]E\left[\mathbf{U}_{n-j}\right] $$ =\sum_{k=0}^{n-1}\left(\frac{1}{2}\right)^{2k+2}=\sum_{k=1}^{n}\left(\frac{1}{2}\right)^{2k}=\frac{\left(\frac{1}{2}\right)^{2}\left(1-\left(\frac{1}{2}\right)^{2n}\right)}{1-\left(\frac{1}{2}\right)^{2}}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right). $

iii) Find $ Var\left[\mathbf{X}_{n}\right] $

$ Var\left[\mathbf{X}_{n}\right]=E\left[\mathbf{X}_{n}^{2}\right]-\left(E\left[\mathbf{X_{n}}\right]\right)^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right). $

(b) (15 points)

Find the characteristic function of $ \mathbf{X}_{n} $ .

Since $ \mathbf{U}_{n} $ is a sequence of i.i.d. Gaussian random variables, $ \mathbf{X}_{n} $ is a sequence of Gaussian random variables with zero mean and variance $ \sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right) $ . Hence the characteristic function of $ \mathbf{X}_{n} $ is $ \Phi_{\mathbf{X}_{n}}\left(\omega\right)=\exp\left(i\mu_{\mathbf{X}_{n}}\omega-\frac{1}{2}\sigma_{\mathbf{X}_{n}}^{2}\omega^{2}\right)=\exp\left(-\frac{\omega^{2}}{6}\left(1-\left(\frac{1}{2}\right)^{2n}\right)\right). $

(c) (10 points)

Does the sequence $ \mathbf{X}_{n} $ converge in distribution? A simple yes or no answer is not sufficient. You must justify your answer.

$ \Phi=F_{\mathbf{X}_{n}}\left(x\right)=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}\sigma_{\mathbf{X}_{n}}}\exp\left(-\frac{x'^{2}}{2\sigma_{\mathbf{X}_{n}}^{2}}\right)dx' $ where $ \sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3}\left(1-\left(\frac{1}{2}\right)^{2n}\right) $ .

Since $ \lim_{n\rightarrow\infty}\sigma_{\mathbf{X}_{n}}^{2}=\frac{1}{3} , \lim_{n\rightarrow\infty}F_{\mathbf{X}_{n}}=\int_{-\infty}^{x}\frac{1}{\sqrt{\frac{2\pi}{3}}}\exp\left(-\frac{x'^{2}}{2\sigma_{\mathbf{X}_{n}}^{2}}\right)dx'=F_{\mathbf{X}}\left(x\right). $

$ \therefore $ The squance $ \mathbf{X}_{n} $ converges in distribution.

2

Let $ \Phi $ be the standard normal distribution, i.e., the distribution function of a zero-mean, unit-variance Gaussian random variable. Let $ \mathbf{X} $ be a normal random variable with mean $ \mu $ and variance 1 . We want to find $ E\left[\Phi\left(\mathbf{X}\right)\right] $ .

(a) (10 points)

First show that $ E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\mathbf{Z}\leq\mathbf{X}\right) $ , where $ \mathbf{Z} $ is a standard normal random variable independent of $ \mathbf{X} $ . Hint: Use an intermediate random variable $ \mathbf{I} $ defined as

$ \mathbf{I}=\left\{ \begin{array}{lll} 1 & & \text{if }\mathbf{Z}\leq\mathbf{X}\\ 0 & & \text{if }\mathbf{Z}>\mathbf{X}. \end{array}\right. $

$ P\left(\mathbf{Z}\leq\mathbf{X}\right)=\int_{-\infty}^{\infty}P\left(\mathbf{Z}\leq x|\mathbf{X}=x\right)\cdot f_{\mathbf{X}}\left(x\right)dx=\int_{-\infty}^{\infty}\Phi\left(x\right)\cdot f_{\mathbf{X}}\left(x\right)dx=E\left[\Phi\left(\mathbf{X}\right)\right]. $

(b) (10 points)

Now use the result from Part (a) to show that $ E\left[\Phi\left(\mathbf{X}\right)\right]=\Phi\left(\frac{\mu}{\sqrt{2}}\right) $ .

Let $ \mathbf{Y}=\mathbf{Z}-\mathbf{X} $ . Since $ \mathbf{Z} $ and $ \mathbf{X} $ are Gaussian random variables, $ \mathbf{Y} $ is also a Gaussian random variable. $ E\left[\mathbf{Y}\right]=E\left[\mathbf{Z}\right]-E\left[\mathbf{X}\right]=-\mu. $

$ Var\left[\mathbf{Y}\right]=E\left[\left(\mathbf{Y}-E\left[\mathbf{Y}\right]\right)^{2}\right]=E\left[\left(\mathbf{Z}-\left(\mathbf{X}-\mu\right)\right)^{2}\right]=E\left[\mathbf{Z}^{2}\right]+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-2E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right] $$ =E\left[\mathbf{Z}^{2}\right]-E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right]+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-E\left[\mathbf{Z}\right]E\left[\mathbf{X}-\mu\right] $$ =E\left[\mathbf{Z}^{2}\right]-\left(E\left[\mathbf{Z}\right]\right)^{2}+E\left[\left(\mathbf{X}-\mu\right)^{2}\right]-\left(E\left[\mathbf{X}-\mu\right]\right)^{2}=Var\left[\mathbf{Z}\right]+Var\left[\mathbf{X}\right]=2. $

$ E\left[\Phi\left(\mathbf{X}\right)\right]=P\left(\left\{ \mathbf{Z}\leq\mathbf{X}\right\} \right)=P\left(\left\{ \mathbf{Y}\leq0\right\} \right)=\Phi\left(\frac{0-\left(-\mu\right)}{\sqrt{2}}\right)=\Phi\left(\frac{\mu}{\sqrt{2}}\right). $

3 (15 points)

Let $ \mathbf{Y}(t) $ be the output of linear system with impulse response $ h\left(t\right) $ and input $ \mathbf{X}\left(t\right)+\mathbf{N}\left(t\right) $ , where $ \mathbf{X}\left(t\right) $ and $ \mathbf{N}\left(t\right) $ are jointly wide-sense stationary independent random processes. If $ \mathbf{Z}\left(t\right)=\mathbf{X}\left(t\right)-\mathbf{Y}\left(t\right) $ , find the power spectral density $ S_{\mathbf{Z}}\left(\omega\right) $ in terms of $ S_{\mathbf{X}}\left(\omega\right) , S_{\mathbf{N}}\left(\omega\right) , m_{\mathbf{X}}=E\left[\mathbf{X}\right] , and m_{\mathbf{Y}}=E\left[\mathbf{Y}\right] $ .

Solution

Let $ \mathbf{M}\left(t\right)=\mathbf{X}\left(t\right)+\mathbf{N}\left(t\right) $ . Since $ \mathbf{X}\left(t\right) $ and $ \mathbf{N}\left(t\right) $ are jointly wide-sense stationary. $ \mathbf{M}\left(t\right) $ is also a wide-sense stationary random process.

$ \mathbf{Y}\left(t\right)=\mathbf{M}\left(t\right)*h\left(t\right). $

$ R_{\mathbf{Y}}\left(\tau\right)=\left(R_{\mathbf{M}}*h*\widetilde{h}\right)\left(\tau\right)\text{ where }\left(\widetilde{h}\left(t\right)=h\left(-t\right)\right). $

$ R_{\mathbf{M}}\left(\tau\right) R_{\mathbf{XY}}\left(\tau\right) $

R_{\mathbf{Z}}\left(\tau\right) S_{\mathbf{Z}}\left(\omega\right) \because m_{\mathbf{Y}}=m_{\mathbf{M}}*h\left(t\right)=\int_{-\infty}^{\infty}\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)h\left(t\right)dt=\left(m_{\mathbf{X}}+m_{\mathbf{N}}\right)H\left(0\right)\Rightarrow m_{\mathbf{N}}H\left(0\right)=m_{\mathbf{Y}}-m_{\mathbf{X}}H\left(0\right).

4

Suppose customer orders arrive according to an i.i.d. Bernoulli random process \mathbf{X}_{n} with parameter p . Thus, an order arrives at time index n (i.e., \mathbf{X}_{n}=1 ) with probability p ; if an order does not arrive at time index n , then \mathbf{X}_{n}=0 . When an order arrives, its size is an exponential random variable with parameter \lambda . Let \mathbf{S}_{n} be the total size of all orders up to time n .

(a) (20 points)

Find the mean and autocorrelation function of \mathbf{S}_{n} .

Let \mathbf{Y}_{n} be the size of an order at time index n , then \mathbf{Y}_{n} is a sequence of i.i.d. exponential random variables. \mathbf{S}_{n}=\sum_{k=1}^{n}\mathbf{X}_{n}\mathbf{Y}_{n}. E\left[\mathbf{S}_{n}\right]=\sum_{k=1}^{n}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{Y}_{n}\right]=\sum_{k=1}^{n}p\cdot\frac{1}{\lambda}=\frac{np}{\lambda}. R_{\mathbf{S}}\left(n,m\right)=E\left[\mathbf{S}_{n}\mathbf{S}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}E\left[\mathbf{X}_{n}\right]E\left[\mathbf{X}_{m}\right]E\left[\mathbf{Y}_{n}\right]E\left[\mathbf{Y}_{m}\right]=\sum_{k=1}^{n}\sum_{l=1}^{m}\frac{p^{2}}{\lambda^{2}}=nm\frac{p^{2}}{\lambda^{2}}.

(b) (5 points)

Is \mathbf{S}_{n} a stationary random process? Explain.

• Approach 1: \mathbf{S}_{n} is not a stationary random process since R_{\mathbf{S}}\left(n,m\right) does not depend on only m-n .

• Approach 2: \mathbf{S}_{n} is not a stationary random process since E\left[\mathbf{S}_{n}\right] is not constant.


Back to ECE600

Back to ECE 600 QE

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang