Line 5: Line 5:
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Taylor series of Single Variable Functions
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Taylor series of Single Variable Functions
 
|-
 
|-
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring)  
+
| <math>\,f(x) \ = \ f(a) \ + \ f'(a)(x \ - \ a) \ + \ \frac{f''(a)(x-a)^2}{2!} \ + \ \cdot \cdot \cdot \ + \ \frac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!} \ + \ R_n \,</math>
| <math>\,P(A^c) = 1 - P(A)\,</math>
+
|-
 +
|<math> \text{Rest of Lagrange } \qquad R_n = \frac {f^{(n)}(\zeta)(x-a)^n}{n!}</math>
 +
|-
 +
|<math> \text{Rest of Cauchy } \qquad R_n = \frac {f^{(n)}(\zeta)(x-\zeta)^{n-1}(x-a)}{(n-1)!}</math>
 
|-
 
|-
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Binomial Series
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" |  Binomial Series
 
|-
 
|-
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring)  
+
| <math>
| <math>\,P(A^c) = 1 - P(A)\,</math>
+
\begin{align}
 +
(a+x)^n & = a^n + na^{n-1}x + \frac {n(n-1)}{2!} a^{n-2}x^2 + \frac {n(n-1)(n-2)}{3!} a^{n-3}x^3 + \cdot \cdot \cdot \\
 +
& = a^n + \binom{n}{1} a^{n-1}x + \binom{n}{2} a^{n-2}x^2 + \binom{n}{3} a^{n-3}x^3 + \cdot \cdot \cdot \\
 +
\end{align}
 +
</math>
 +
|-
 +
| Some particular Cases:
 +
|-
 +
| <math> (a+x)^2 \ = \  a^2 \ + \  2ax \  + \  x^2</math>
 +
|-
 +
| <math> (a+x)^3 \ = \  a^3 \ + \  3a^2x \  + \  3ax^2 \ + \ x^3</math>
 +
|-
 +
| <math> (a+x)^4 \ = \  a^4 \ + \  4a^3x \  + \  6a^2x^2 \ + \ 4ax^3 \ + \ x^4</math>
 
|-
 
|-
  

Revision as of 13:36, 22 November 2010

Taylor Series
Taylor series of Single Variable Functions
$ \,f(x) \ = \ f(a) \ + \ f'(a)(x \ - \ a) \ + \ \frac{f''(a)(x-a)^2}{2!} \ + \ \cdot \cdot \cdot \ + \ \frac{f^{(n-1)}(a)(x-a)^{n-1}}{(n-1)!} \ + \ R_n \, $
$ \text{Rest of Lagrange } \qquad R_n = \frac {f^{(n)}(\zeta)(x-a)^n}{n!} $
$ \text{Rest of Cauchy } \qquad R_n = \frac {f^{(n)}(\zeta)(x-\zeta)^{n-1}(x-a)}{(n-1)!} $
Binomial Series
$ \begin{align} (a+x)^n & = a^n + na^{n-1}x + \frac {n(n-1)}{2!} a^{n-2}x^2 + \frac {n(n-1)(n-2)}{3!} a^{n-3}x^3 + \cdot \cdot \cdot \\ & = a^n + \binom{n}{1} a^{n-1}x + \binom{n}{2} a^{n-2}x^2 + \binom{n}{3} a^{n-3}x^3 + \cdot \cdot \cdot \\ \end{align} $
Some particular Cases:
$ (a+x)^2 \ = \ a^2 \ + \ 2ax \ + \ x^2 $
$ (a+x)^3 \ = \ a^3 \ + \ 3a^2x \ + \ 3ax^2 \ + \ x^3 $
$ (a+x)^4 \ = \ a^4 \ + \ 4a^3x \ + \ 6a^2x^2 \ + \ 4ax^3 \ + \ x^4 $
Series Expansion of Exponential functions and Logarithms
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
Series Expansion of Circular functions
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
Series Expansion of Hyperbolic functions
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
Various Series
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
Series of Reciprocal Power Series
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
Taylor Series of Two Variables function
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $

Back to Collective Table

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood