(New page: {| |- ! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initia...) |
|||
Line 3: | Line 3: | ||
! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Taylor Series | ! style="background: rgb(228, 188, 126) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Taylor Series | ||
|- | |- | ||
− | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Taylor series of | + | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Taylor series of Single Variable Functions |
|- | |- | ||
| align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | ||
| <math>\,P(A^c) = 1 - P(A)\,</math> | | <math>\,P(A^c) = 1 - P(A)\,</math> | ||
|- | |- | ||
− | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | | + | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Binomial Series |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) |
− | | <math>\, | + | | <math>\,P(A^c) = 1 - P(A)\,</math> |
|- | |- | ||
− | | align="right" style="padding-right: 1em;" | | + | |
− | | <math>\, | + | ! style="background: rgb(238, 238, 238) none ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Series Expansion of Exponential functions and Logarithms |
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | ||
+ | | <math>\,P(A^c) = 1 - P(A)\,</math> | ||
+ | |- | ||
+ | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Series Expansion of Circular functions | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | ||
+ | | <math>\,P(A^c) = 1 - P(A)\,</math> | ||
+ | |- | ||
+ | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Series Expansion of Hyperbolic functions | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | ||
+ | | <math>\,P(A^c) = 1 - P(A)\,</math> | ||
+ | |- | ||
+ | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Various Series | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | ||
+ | | <math>\,P(A^c) = 1 - P(A)\,</math> | ||
+ | |- | ||
+ | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Series of Reciprocal Power Series | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | ||
+ | | <math>\,P(A^c) = 1 - P(A)\,</math> | ||
+ | |- | ||
+ | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Taylor Series of Two Variables function | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | The complement of an event A (i.e. the event A not occurring) | ||
+ | | <math>\,P(A^c) = 1 - P(A)\,</math> | ||
|- | |- | ||
− | + | ||
− | + | ||
|} | |} | ||
Revision as of 13:06, 22 November 2010
Taylor Series | |
---|---|
Taylor series of Single Variable Functions | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
Binomial Series | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
Series Expansion of Exponential functions and Logarithms | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
Series Expansion of Circular functions | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
Series Expansion of Hyperbolic functions | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
Various Series | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
Series of Reciprocal Power Series | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |
Taylor Series of Two Variables function | |
The complement of an event A (i.e. the event A not occurring) | $ \,P(A^c) = 1 - P(A)\, $ |