Line 9: | Line 9: | ||
• We can define the events as | • We can define the events as | ||
− | – A= Box selected at random contains at least one dime. | + | – A = Box selected at random contains at least one dime. |
− | – Q= Coin drawn from box selected is a quater. | + | – Q = Coin drawn from box selected is a quater. |
− | – X= Box X is selected. | + | – X = Box X is selected. |
− | – Y= Box Y is selected. | + | – Y = Box Y is selected. |
− | – Z= Box Z is selected. | + | – Z = Box Z is selected. |
− | • From the given information, we have P\left(X\right)=P\left(Y\right)=P\left(Z\right)=1/3 . P\left(Q|X\right)=1,P\left(Q|Y\right)=1/3,P\left(Q|Z\right)=1/2 . | + | • From the given information, we have <math>P\left(X\right)=P\left(Y\right)=P\left(Z\right)=1/3 . P\left(Q|X\right)=1,P\left(Q|Y\right)=1/3,P\left(Q|Z\right)=1/2</math> . |
− | • By using Bayes' theorem, P\left(A|Q\right) is P\left(A|Q\right) | + | • By using Bayes' theorem, <math>P\left(A|Q\right)</math> is |
+ | |||
+ | <math>P\left(A|Q\right)=\frac{P\left(A\cap Q\right)}{P\left(Q\right)}=\frac{P\left(\left(Y\cup Z\right)\cap Q\right)}{P\left(Q\right)}=\frac{P\left(Y\cap Q\right)\cup P\left(Z\cap Q\right)}{P\left(Q\cap X\right)+P\left(Q\cap Y\right)+P\left(Q\cap Z\right)}</math><math>=\frac{P\left(Y\cap Q\right)+P\left(Z\cap Q\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}</math><math>=\frac{P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}</math><math>=\frac{P\left(Q|Y\right)+P\left(Q|Z\right)}{P\left(Q|X\right)+P\left(Q|Y\right)+P\left(Q|Z\right)}=\frac{\frac{1}{3}+\frac{1}{2}}{1+\frac{1}{3}+\frac{1}{2}}=\frac{\frac{5}{6}}{\frac{11}{6}}=\frac{5}{11}.</math> | ||
2. (20 pts.) | 2. (20 pts.) | ||
Line 29: | Line 31: | ||
I. | I. | ||
− | Consider a random experiment with probability space \left(\mathcal{S},\mathcal{F},P\right) and let A\in\mathcal{F} and B\in\mathcal{F} . Let P\left(A\right)=1/3 , P\left(B\right)=1/3 , and P\left(A\cap B\right)=1/4 . Find P\left(A|\bar{B}\right) . | + | Consider a random experiment with probability space <math>\left(\mathcal{S},\mathcal{F},P\right)</math> and let <math>A\in\mathcal{F}</math> and <math>B\in\mathcal{F}</math> . Let <math>P\left(A\right)=1/3 , P\left(B\right)=1/3</math> , <math>and P\left(A\cap B\right)=1/4</math> . Find <math>P\left(A|\bar{B}\right)</math> . |
A. 1/12 B. 1/8 C. 1/6 D. 1/4 E. 1/3 | A. 1/12 B. 1/8 C. 1/6 D. 1/4 E. 1/3 | ||
Line 35: | Line 37: | ||
Solution | Solution | ||
− | P\left(A|\bar{B}\right)=\frac{P\left(A\cap\bar{B}\right)}{P\left(\bar{B}\right)}=\frac{P\left(A\cap\bar{B}\right)}{1-P\left(B\right)}=\frac{P\left(A\right)-P\left(A\cap B\right)}{1-P\left(B\right)}=\frac{\frac{1}{3}-\frac{1}{4}}{1-\frac{1}{3}}=\frac{\frac{1}{12}}{\frac{2}{3}}=\frac{1}{12}\cdot\frac{3}{2}=\frac{1}{8}. | + | <math>P\left(A|\bar{B}\right)=\frac{P\left(A\cap\bar{B}\right)}{P\left(\bar{B}\right)}=\frac{P\left(A\cap\bar{B}\right)}{1-P\left(B\right)}=\frac{P\left(A\right)-P\left(A\cap B\right)}{1-P\left(B\right)}=\frac{\frac{1}{3}-\frac{1}{4}}{1-\frac{1}{3}}=\frac{\frac{1}{12}}{\frac{2}{3}}=\frac{1}{12}\cdot\frac{3}{2}=\frac{1}{8}.</math> |
II. | II. | ||
− | Let \mathbf{X} and \mathbf{Y} be two jointly distributed random variables with joint pdf | + | Let <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> be two jointly distributed random variables with joint pdf |
− | f\left(x,y\right)=\left\{ \begin{array}{lll} | + | <math>f\left(x,y\right)=\left\{ \begin{array}{lll} |
− | e^{-\left(x+y\right)} | + | e^{-\left(x+y\right)} \text{, for }x\geq0\text{ and }y\geq0,\\ |
− | 0 | + | 0 \text{, elsewhere.} |
− | \end{array}\right. | + | \end{array}\right.</math> |
− | Find P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>1/2\right\} \right) . | + | Find <math>P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>1/2\right\} \right)</math> . |
− | A. 1/\sqrt{e} B. \left(2\sqrt{e}-1\right)/2\sqrt{e} C. \left(1-2\sqrt{e}\right)/2\sqrt{e} D. 2\sqrt{e}/\left(2\sqrt{e}-1\right) E. 2\sqrt{e}/\left(1-2\sqrt{e}\right) | + | A. <math>1/\sqrt{e}</math> B. <math>\left(2\sqrt{e}-1\right)/2\sqrt{e}</math> C. <math>\left(1-2\sqrt{e}\right)/2\sqrt{e}</math> D. <math>2\sqrt{e}/\left(2\sqrt{e}-1\right)</math> E. <math>2\sqrt{e}/\left(1-2\sqrt{e}\right)</math> |
Solution | Solution | ||
Line 54: | Line 56: | ||
By using Bayes' theroem, | By using Bayes' theroem, | ||
− | P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} \cap\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)}{P\left(\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)}. | + | <math>P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} \cap\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)}{P\left(\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)}.</math> |
− | P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} \cap\left\{ \mathbf{X}>\frac{1}{2}\right\} \right) | + | <math>P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} \cap\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\int_{1/2}^{\infty}\int_{0}^{x}e^{-\left(x+y\right)}dydx=\int_{1/2}^{\infty}-e^{-\left(x+y\right)}\Bigl|_{0}^{x}dx</math><math>=\int_{1/2}^{\infty}\left[e^{-x}-e^{-2x}\right]dx=-e^{-x}+\frac{1}{2}e^{-2x}\Bigl|_{1/2}^{\infty}=e^{-\frac{1}{2}}-\frac{1}{2}e^{-1}.</math> |
− | P\left(\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\int_{1/2}^{\infty}e^{-\left(x+y\right)}dx=-e^{-\left(x+y\right)}\Bigl|_{1/2}^{\infty}=e^{-\left(\frac{1}{2}+y\right)}. | + | <math>P\left(\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\int_{1/2}^{\infty}e^{-\left(x+y\right)}dx=-e^{-\left(x+y\right)}\Bigl|_{1/2}^{\infty}=e^{-\left(\frac{1}{2}+y\right)}.</math> |
− | P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{e^{-\frac{1}{2}}-\frac{1}{2}e^{-1}}{e^{-\frac{1}{2}}}=\frac{2\sqrt{e}-1}{2\sqrt{e}}. | + | <math>P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{e^{-\frac{1}{2}}-\frac{1}{2}e^{-1}}{e^{-\frac{1}{2}}}=\frac{2\sqrt{e}-1}{2\sqrt{e}}.</math> |
III. | III. | ||
− | Let \mathbf{X} be a random variable with mean 2 , variance 8 , and moment generating function \phi_{\mathbf{X}}\left(s\right)=E\left\{ e^{s\mathbf{X}}\right\} . Find the first three terms in the series expansion of \phi_{\mathbf{X}}\left(s\right) about zero. (Hint: The moment generating theorem). | + | Let <math>\mathbf{X}</math> be a random variable with mean 2 , variance 8 , and moment generating function <math>\phi_{\mathbf{X}}\left(s\right)=E\left\{ e^{s\mathbf{X}}\right\}</math> . Find the first three terms in the series expansion of <math>\phi_{\mathbf{X}}\left(s\right)</math> about zero. (Hint: The moment generating theorem). |
− | A. 2s+2s^{2} B. 1+2s+6s^{2} C. 1+2s+2s^{2} D. 1+2s+4s^{2} E. 1+2s+12s^{2} | + | A. <math>2s+2s^{2}</math> B. <math>1+2s+6s^{2}</math> C. <math>1+2s+2s^{2}</math> D. <math>1+2s+4s^{2}</math> E. <math>1+2s+12s^{2}</math> |
− | Recall | + | =Recall= |
− | According to the series expansion, e^{\lambda}=\sum_{k=0}^{\infty}\frac{\lambda^{k}}{k!} . | + | According to the series expansion, <math>e^{\lambda}=\sum_{k=0}^{\infty}\frac{\lambda^{k}}{k!}</math> . |
Solution | Solution | ||
− | \phi_{\mathbf{X}}\left(s\right)=E\left[e^{s\mathbf{X}}\right]=E\left[1+s\mathbf{X}+\frac{s^{2}\mathbf{X}^{2}}{2}+\cdots\right]=1+E\left[\mathbf{X}\right]s+\frac{E\left[\mathbf{X}^{2}\right]s^{2}}{2}+\cdots=1+2s+6s^{2}. | + | <math>\phi_{\mathbf{X}}\left(s\right)=E\left[e^{s\mathbf{X}}\right]=E\left[1+s\mathbf{X}+\frac{s^{2}\mathbf{X}^{2}}{2}+\cdots\right]=1+E\left[\mathbf{X}\right]s+\frac{E\left[\mathbf{X}^{2}\right]s^{2}}{2}+\cdots=1+2s+6s^{2}.</math> |
− | Since E\left[\mathbf{X}^{2}\right]=Var\left[\mathbf{X}\right]+\left(E\left[\mathbf{X}\right]\right)^{2}=8+4=12 . | + | Since <math>E\left[\mathbf{X}^{2}\right]=Var\left[\mathbf{X}\right]+\left(E\left[\mathbf{X}\right]\right)^{2}=8+4=12</math> . |
IV. | IV. | ||
− | Find the characteristic function \Phi\left(\omega\right) of an exponentially distributed random variable with mean \mu . | + | Find the characteristic function <math>\Phi\left(\omega\right)</math> of an exponentially distributed random variable with mean <math>\mu</math> . |
− | A. \exp\left\{ \mu\left(e^{i\omega}-1\right)\right\} B. \exp\left\{ \mu e^{i\omega}\right\} -1 C. \left(1-i\omega\mu\right)^{-1} D. \left(1+i\omega\mu\right)^{-2} E. e^{i\omega\mu}e^{-\frac{1}{2}\omega^{2}\mu^{2}} | + | A. <math>\exp\left\{ \mu\left(e^{i\omega}-1\right)\right\}</math> B. <math>\exp\left\{ \mu e^{i\omega}\right\} -1</math> C. <math>\left(1-i\omega\mu\right)^{-1}</math> D. <math>\left(1+i\omega\mu\right)^{-2}</math> E. <math>e^{i\omega\mu}e^{-\frac{1}{2}\omega^{2}\mu^{2}}</math> |
Solution | Solution | ||
− | \Phi\left(\omega\right) | + | <math>\Phi\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\int_{0}^{\infty}\frac{1}{\mu}e^{-\frac{x}{\mu}}e^{i\omega x}dx=\frac{1}{\mu}\int_{0}^{\infty}e^{-x\left(1/\mu-i\omega\right)}=\frac{1}{\mu}\cdot\frac{e^{-x\left(1/\mu-i\omega\right)}}{-\left(1/\mu-i\omega\right)}\biggl|_{0}^{\infty}</math><math>=\frac{1}{\mu}\cdot\frac{1}{\left(1/\mu-i\omega\right)}=\frac{1}{1-i\omega\mu}=\left(1-i\omega\mu\right)^{-1}.</math> |
− | \because\frac{1}{\mu}-i\omega>0 because i\omega is a imaginary term. | + | <math>\because\frac{1}{\mu}-i\omega>0</math> because <math>i\omega</math> is a imaginary term. |
3. (15 pts.) | 3. (15 pts.) | ||
− | Let \left\{ t_{k}\right\} be a set of Poisson points with parameter \lambda on the positive real line such that if \mathbf{N}\left(t_{1},t_{2}\right) is defined as the number of points in the interval \left(t_{1},t_{2}\right] , then | + | Let <math>\left\{ t_{k}\right\}</math> be a set of Poisson points with parameter \lambda on the positive real line such that if <math>\mathbf{N}\left(t_{1},t_{2}\right)</math> is defined as the number of points in the interval <math>\left(t_{1},t_{2}\right]</math> , then |
− | P\left(\left\{ \mathbf{N}\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!},\quad k=0,1,2,\cdots,\quad t_{2}>t_{1}\geq0. | + | <math>P\left(\left\{ \mathbf{N}\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!},\quad k=0,1,2,\cdots,\quad t_{2}>t_{1}\geq0.</math> |
− | Let \mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right) be the Poisson counting process associated with these points for t>0\;\left(n.b.,\;\mathbf{X}\left(0\right)=0\right) | + | Let <math>\mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right)</math> be the Poisson counting process associated with these points for <math>t>0\;\left(n.b.,\;\mathbf{X}\left(0\right)=0\right)</math> |
− | (a) Find the mean of \mathbf{X}\left(t\right) . | + | (a) Find the mean of <math>\mathbf{X}\left(t\right)</math> . |
− | \Phi_{\mathbf{X}\left(t\right)}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}\left(t\right)}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left[e^{i\omega}\lambda t\right]^{k}}{k!}=e^{\lambda t\left[e^{i\omega}-1\right]}. | + | <math>\Phi_{\mathbf{X}\left(t\right)}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}\left(t\right)}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left[e^{i\omega}\lambda t\right]^{k}}{k!}=e^{\lambda t\left[e^{i\omega}-1\right]}.</math> |
− | \phi_{\mathbf{X}}\left(s\right)=e^{\lambda t\left[e^{s}-1\right]}. | + | <math>\phi_{\mathbf{X}}\left(s\right)=e^{\lambda t\left[e^{s}-1\right]}.</math> |
− | E\left[\mathbf{X}\left(t\right)\right]=\frac{d\phi_{\mathbf{X}}\left(s\right)}{ds}\biggl|_{s=0}=e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}\biggl|_{s=0}=\lambda t. | + | <math>E\left[\mathbf{X}\left(t\right)\right]=\frac{d\phi_{\mathbf{X}}\left(s\right)}{ds}\biggl|_{s=0}=e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}\biggl|_{s=0}=\lambda t.</math> |
− | Alternative solution: \mathbf{X}\left(t\right) is Poisson process with parameter \lambda t \Rightarrow E\left[\mathbf{X}\left(t\right)\right]=Var\left[\mathbf{X}\left(t\right)\right]=\lambda t . | + | Alternative solution: <math>\mathbf{X}\left(t\right)</math> is Poisson process with parameter <math>\lambda t \Rightarrow E\left[\mathbf{X}\left(t\right)\right]=Var\left[\mathbf{X}\left(t\right)\right]=\lambda t</math> . |
− | (b) Find the variance of \mathbf{X}\left(t\right) . | + | (b) Find the variance of <math>\mathbf{X}\left(t\right)</math> . |
− | E\left[\mathbf{X}\left(t\right)^{2}\right]=\frac{d^{2}\phi_{\mathbf{X}\left(t\right)}\left(s\right)}{ds^{2}}\left|_{s=0}\right.=\frac{d}{ds}\left[e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}\right]\left|_{s=0}\right.=\lambda te^{s}e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}+\lambda te^{s}e^{\lambda t\left[e^{s}-1\right]}\left|_{s=0}\right.=\left(\lambda t\right)^{2}+\lambda t. | + | <math>E\left[\mathbf{X}\left(t\right)^{2}\right]=\frac{d^{2}\phi_{\mathbf{X}\left(t\right)}\left(s\right)}{ds^{2}}\left|_{s=0}\right.=\frac{d}{ds}\left[e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}\right]\left|_{s=0}\right.=\lambda te^{s}e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}+\lambda te^{s}e^{\lambda t\left[e^{s}-1\right]}\left|_{s=0}\right.=\left(\lambda t\right)^{2}+\lambda t.</math> |
− | Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}\left(t\right)^{2}\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t. | + | <math>Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}\left(t\right)^{2}\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t.</math> |
− | Alternative solution: \mathbf{X}\left(t\right) is Poisson process with parameter \lambda t \Rightarrow E\left[\mathbf{X}\left(t\right)\right]=Var\left[\mathbf{X}\left(t\right)\right]=\lambda t . | + | Alternative solution: <math>\mathbf{X}\left(t\right)</math> is Poisson process with parameter <math>\lambda t \Rightarrow E\left[\mathbf{X}\left(t\right)\right]=Var\left[\mathbf{X}\left(t\right)\right]=\lambda t .</math> |
− | (c) Derive an expression for the autocorrelation function of \mathbf{X}\left(t\right) . | + | (c) Derive an expression for the autocorrelation function of <math>\mathbf{X}\left(t\right)</math> . |
− | Assume t_{2}>t_{1} . | + | Assume <math>t_{2}>t_{1}</math> . |
− | R_{\mathbf{XX}}\left(t_{1},t_{2}\right) | + | <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)+\mathbf{X}\left(t_{1}\right)\right]\right]</math><math>=E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]</math><math>=E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]</math><math>=\left(\lambda t_{1}\right)\lambda\left(t_{2}-t_{1}\right)+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}-\lambda^{2}t_{1}^{2}+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}+\lambda t_{1}.</math> |
− | Similarly, for t_{2}<t_{1} , R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\lambda^{2}t_{1}t_{2}+\lambda t_{2} . | + | Similarly, for <math>t_{2}<t_{1}</math> , <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\lambda^{2}t_{1}t_{2}+\lambda t_{2}</math> . |
− | \therefore R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\lambda^{2}t_{1}t_{2}+\lambda\min\left(t_{1},t_{2}\right). | + | <math>\therefore R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\lambda^{2}t_{1}t_{2}+\lambda\min\left(t_{1},t_{2}\right).</math> |
− | \because Recall: Var\left[\mathbf{X}\left(t_{1}\right)\right]=E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]-\left(E\left[\mathbf{X}\left(t_{1}\right)\right]\right)^{2}\Longrightarrow E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]=Var\left[\mathbf{X}\left(t_{1}\right)\right]+\left(E\left[\mathbf{X}\left(t_{1}\right)\right]\right)^{2} . | + | <math>\because</math> Recall: <math>Var\left[\mathbf{X}\left(t_{1}\right)\right]=E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]-\left(E\left[\mathbf{X}\left(t_{1}\right)\right]\right)^{2}\Longrightarrow E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]=Var\left[\mathbf{X}\left(t_{1}\right)\right]+\left(E\left[\mathbf{X}\left(t_{1}\right)\right]\right)^{2}</math> . |
− | (d) Is \mathbf{X}\left(t\right) wide-sense stationary? Explain your answer. | + | (d) Is <math>\mathbf{X}\left(t\right)</math> wide-sense stationary? Explain your answer. |
− | No, \mathbf{X}\left(t\right) is not WSS, because E\left[\mathbf{X}\left(t\right)\right]=\lambda t is not constant. | + | No, <math>\mathbf{X}\left(t\right)</math> is not WSS, because <math>E\left[\mathbf{X}\left(t\right)\right]=\lambda t</math> is not constant. |
4. (15 pts.) | 4. (15 pts.) | ||
− | Let \mathbf{X} be a continuous random variable with pdf f_{\mathbf{X}}\left(x\right) , mean \mu , and variance \sigma^{2} . Prove the Chebyshev Inequality:P\left(\left\{ \mathbf{X}-\mu\right\} \geq\epsilon\right)\leq\frac{\sigma^{2}}{\epsilon^{2}}, where \epsilon is any positive constant. | + | Let <math>\mathbf{X}</math> be a continuous random variable with pdf <math>f_{\mathbf{X}}\left(x\right)</math> , mean <math>\mu</math> , and variance <math>\sigma^{2}</math> . Prove the Chebyshev Inequality:<math>P\left(\left\{ \mathbf{X}-\mu\right\} \geq\epsilon\right)\leq\frac{\sigma^{2}}{\epsilon^{2}}</math>, where <math>\epsilon</math> is any positive constant. |
Solution | Solution | ||
Line 142: | Line 144: | ||
5. (15 pts.) | 5. (15 pts.) | ||
− | Let \mathbf{X}\left(t\right) be a zero-mean wide-sense stationary Gaussian white noise process with autocorrelation function R_{\mathbf{XX}}\left(\tau\right)=S_{0}\delta\left(\tau\right) . Suppose that \mathbf{X}\left(t\right) is the input to a linear time invariant system with impulse response h\left(t\right)=e^{-\alpha t}\cdot1_{\left[0,\infty\right)}\left(t\right), where \alpha is a positive constant. Let \mathbf{Y}\left(t\right) be the output of the system and assume that the input has been applied to the system for all time. | + | Let <math>\mathbf{X}\left(t\right)</math> be a zero-mean wide-sense stationary Gaussian white noise process with autocorrelation function <math>R_{\mathbf{XX}}\left(\tau\right)=S_{0}\delta\left(\tau\right)</math> . Suppose that <math>\mathbf{X}\left(t\right)</math> is the input to a linear time invariant system with impulse response <math>h\left(t\right)=e^{-\alpha t}\cdot1_{\left[0,\infty\right)}\left(t\right)</math>, where <math>\alpha</math> is a positive constant. Let <math>\mathbf{Y}\left(t\right)</math> be the output of the system and assume that the input has been applied to the system for all time. |
− | (a) What is the mean of \mathbf{Y}\left(t\right) ? | + | (a) What is the mean of <math>\mathbf{Y}\left(t\right)</math> ? |
− | E\left[\mathbf{Y}\left(t\right)\right]=E\left[\int_{-\infty}^{\infty}h\left(\tau\right)\mathbf{X}\left(t-\tau\right)d\tau\right]=\int_{-\infty}^{\infty}h\left(\tau\right)E\left[\mathbf{X}\left(t-\tau\right)\right]d\tau=\int_{-\infty}^{\infty}h\left(\tau\right)\cdot0d\tau=0. | + | <math>E\left[\mathbf{Y}\left(t\right)\right]=E\left[\int_{-\infty}^{\infty}h\left(\tau\right)\mathbf{X}\left(t-\tau\right)d\tau\right]=\int_{-\infty}^{\infty}h\left(\tau\right)E\left[\mathbf{X}\left(t-\tau\right)\right]d\tau=\int_{-\infty}^{\infty}h\left(\tau\right)\cdot0d\tau=0.</math> |
− | (b) What is the power spectral density of \mathbf{Y}\left(t\right) ? | + | (b) What is the power spectral density of <math>\mathbf{Y}\left(t\right)</math> ? |
− | S_{\mathbf{XX}}\left(\omega\right)=\int_{-\infty}^{\infty}S_{0}\delta\left(\tau\right)e^{-i\omega\tau}d\tau=S_{0}. | + | <math>S_{\mathbf{XX}}\left(\omega\right)=\int_{-\infty}^{\infty}S_{0}\delta\left(\tau\right)e^{-i\omega\tau}d\tau=S_{0}.</math> |
− | H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt=\int_{0}^{\infty}e^{-\alpha t}e^{-i\omega t}dt=\int_{0}^{\infty}e^{-\left(\alpha+i\omega\right)t}dt=\frac{e^{-\left(\alpha+i\omega\right)t}}{-\left(\alpha+i\omega\right)}\biggl|_{0}^{\infty}=\frac{1}{\alpha+i\omega}. | + | <math>H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt=\int_{0}^{\infty}e^{-\alpha t}e^{-i\omega t}dt=\int_{0}^{\infty}e^{-\left(\alpha+i\omega\right)t}dt=\frac{e^{-\left(\alpha+i\omega\right)t}}{-\left(\alpha+i\omega\right)}\biggl|_{0}^{\infty}=\frac{1}{\alpha+i\omega}.</math> |
− | S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2}=S_{\mathbf{XX}}\left(\omega\right)H\left(\omega\right)H^{*}\left(\omega\right)=S_{0}\cdot\frac{1}{\alpha+i\omega}\cdot\frac{1}{\alpha-i\omega}=\frac{S_{0}}{\alpha^{2}+\omega^{2}}. | + | <math>S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2}=S_{\mathbf{XX}}\left(\omega\right)H\left(\omega\right)H^{*}\left(\omega\right)=S_{0}\cdot\frac{1}{\alpha+i\omega}\cdot\frac{1}{\alpha-i\omega}=\frac{S_{0}}{\alpha^{2}+\omega^{2}}.</math> |
− | (c) What is the autocorrelation function of \mathbf{Y}\left(t\right) ? | + | (c) What is the autocorrelation function of <math>\mathbf{Y}\left(t\right)</math> ? |
− | S_{\mathbf{YY}}\left(\omega\right)=\frac{S_{0}}{\alpha^{2}+\omega^{2}}=\left(\frac{S_{0}}{2\alpha}\right)\frac{2\alpha}{\alpha^{2}+\omega^{2}}\leftrightarrow\left(\frac{S_{0}}{2\alpha}\right)e^{-\alpha\left|\tau\right|}=R_{\mathbf{YY}}\left(\tau\right). | + | <math>S_{\mathbf{YY}}\left(\omega\right)=\frac{S_{0}}{\alpha^{2}+\omega^{2}}=\left(\frac{S_{0}}{2\alpha}\right)\frac{2\alpha}{\alpha^{2}+\omega^{2}}\leftrightarrow\left(\frac{S_{0}}{2\alpha}\right)e^{-\alpha\left|\tau\right|}=R_{\mathbf{YY}}\left(\tau\right).</math> |
− | \because e^{-\alpha\left|\tau\right|}\leftrightarrow\frac{2\alpha}{\alpha^{2}+\omega^{2}}\ | + | <math>\because e^{-\alpha\left|\tau\right|}\leftrightarrow\frac{2\alpha}{\alpha^{2}+\omega^{2}}\text{ (on the table given)}.</math> |
If there is no table, then | If there is no table, then | ||
− | R_{\mathbf{YY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{YY}}\left(\omega\right)e^{i\omega\tau}d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{S_{0}}{\alpha^{2}+\omega^{2}}\cdot e^{i\omega\tau}d\omega. | + | <math>R_{\mathbf{YY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{YY}}\left(\omega\right)e^{i\omega\tau}d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{S_{0}}{\alpha^{2}+\omega^{2}}\cdot e^{i\omega\tau}d\omega.</math> |
− | (d) Write an expression for the second-order density f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right) of \mathbf{Y}\left(t\right) . | + | (d) Write an expression for the second-order density <math>f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)</math> of <math>\mathbf{Y}\left(t\right)</math> . |
− | \mathbf{Y}\left(t\right) is a WSS Gaussian random process with E\left[\mathbf{Y}\left(t\right)\right]=0 , \sigma_{\mathbf{Y}\left(t\right)}^{2}=R_{\mathbf{YY}}\left(0\right)=\frac{S_{0}}{2\alpha} . | + | <math>\mathbf{Y}\left(t\right)</math> is a WSS Gaussian random process with <math>E\left[\mathbf{Y}\left(t\right)\right]=0 , \sigma_{\mathbf{Y}\left(t\right)}^{2}=R_{\mathbf{YY}}\left(0\right)=\frac{S_{0}}{2\alpha}</math> . |
− | r_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}=r\left(t_{1}-t_{2}\right)=\frac{C_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{\sqrt{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}}=\frac{R_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{R_{\mathbf{YY}}\left(0\right)}=e^{-\alpha\left|t_{1}-t_{2}\right|}. | + | <math>r_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}=r\left(t_{1}-t_{2}\right)=\frac{C_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{\sqrt{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}}=\frac{R_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{R_{\mathbf{YY}}\left(0\right)}=e^{-\alpha\left|t_{1}-t_{2}\right|}.</math> |
− | f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right) | + | <math>f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)=\frac{1}{2\pi\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)}\left[\frac{y_{1}^{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}}-\frac{2ry_{1}y_{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}}+\frac{y_{2}^{2}}{\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}\right]\right\} </math><math>=\frac{1}{2\pi\frac{S_{0}}{2\alpha}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-1}{2\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[\frac{y_{1}^{2}}{S_{0}/2\alpha}-\frac{2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}}{S_{0}/2\alpha}+\frac{y_{2}^{2}}{S_{0}/2\alpha}\right]\right\} </math><math>=\frac{\alpha}{\pi S_{0}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-\alpha}{S_{0}\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[y_{1}^{2}-2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}+y_{2}^{2}\right]\right\}</math> . |
6. (20 pts.) | 6. (20 pts.) | ||
Line 178: | Line 180: | ||
(a) | (a) | ||
− | Let A , B , and C be three events defined on a random experiment. If P\left(A\cap B\cap C\right)=P\left(A\right)P\left(B\right)P\left(C\right) , then A , B , and C are statistically independent. | + | Let A , B , and C be three events defined on a random experiment. If <math>P\left(A\cap B\cap C\right)=P\left(A\right)P\left(B\right)P\left(C\right)</math> , then A , B , and C are statistically independent. |
Recall | Recall | ||
− | Two events A and B are independent iff P\left(A\cap B\right)=P\left(A\right)P\left(B\right) . | + | Two events A and B are independent iff <math>P\left(A\cap B\right)=P\left(A\right)P\left(B\right)</math> . |
Solution | Solution | ||
− | False. Must also know P(A\cap B)=P\left(A\right)P\left(B\right) , P\left(B\cap C\right)=P\left(B\right)P\left(C\right) , and P\left(C\cap A\right)=P\left(C\right)P\left(A\right) . | + | False. Must also know <math>P(A\cap B)=P\left(A\right)P\left(B\right)</math> , <math>P\left(B\cap C\right)=P\left(B\right)P\left(C\right)</math> , and <math>P\left(C\cap A\right)=P\left(C\right)P\left(A\right)</math> . |
(b) | (b) | ||
− | If the autocorrelation function R_{\mathbf{X}}\left(t_{1},t_{2}\right) of random process \mathbf{X}\left(t\right) can be written as a function of the time difference t_{2}-t_{1} , then \mathbf{X}\left(t\right) is wide-sense stationary. | + | If the autocorrelation function <math>R_{\mathbf{X}}\left(t_{1},t_{2}\right)</math> of random process <math>\mathbf{X}\left(t\right)</math> can be written as a function of the time difference <math>t_{2}-t_{1}</math> , then <math>\mathbf{X}\left(t\right)</math> is wide-sense stationary. |
Solution | Solution | ||
− | False. E\left[\mathbf{X}\left(t\right)\right] must also be constant. | + | False. <math>E\left[\mathbf{X}\left(t\right)\right]</math> must also be constant. |
(c) | (c) | ||
Line 206: | Line 208: | ||
(d) | (d) | ||
− | The autocorrelation function R_{\mathbf{XX}}\left(\tau\right) of a real wide-sense stationary random process \mathbf{X}\left(t\right) is nonnegative for all \tau . | + | The autocorrelation function <math>R_{\mathbf{XX}}\left(\tau\right)</math> of a real wide-sense stationary random process <math>\mathbf{X}\left(t\right)</math> is nonnegative for all <math>\tau</math> . |
Solution | Solution | ||
− | False. R_{\mathbf{XX}}\left(t_{1},t_{2}\right) is non-negative definite. However, it does not mean that R_{\mathbf{XX}}\left(t_{1},t_{2}\right) is nonnegative. | + | False. <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> is non-negative definite. However, it does not mean that <math>R_{\mathbf{XX}}\left(t_{1},t_{2}\right)</math> is nonnegative. |
(e) | (e) | ||
− | Let \mathbf{X}\left(t\right) and \mathbf{Y}\left(t\right) be two zero-mean statistically independent, jointly wide-sense stationary random processes. Then the cross-correlation function R_{\mathbf{XY}}\left(\tau\right)=0 for all \tau . | + | Let <math>\mathbf{X}\left(t\right)</math> and <math>\mathbf{Y}\left(t\right)</math> be two zero-mean statistically independent, jointly wide-sense stationary random processes. Then the cross-correlation function <math>R_{\mathbf{XY}}\left(\tau\right)=0</math> for all <math>\tau</math> . |
Solution | Solution | ||
Line 220: | Line 222: | ||
True. | True. | ||
− | R_{\mathbf{XY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{Y}^{*}\left(t_{2}\right)\right]=0\cdot0=0. | + | <math>R_{\mathbf{XY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{Y}^{*}\left(t_{2}\right)\right]=0\cdot0=0.</math> |
(f) | (f) | ||
− | The cross-correlation function R_{\mathbf{XY}}\left(\tau\right) of two real, jointly wide-sense stationary random process \mathbf{X}\left(t\right) and \mathbf{Y}\left(t\right) has its peak value at \tau=0 . | + | The cross-correlation function <math>R_{\mathbf{XY}}\left(\tau\right)</math> of two real, jointly wide-sense stationary random process <math>\mathbf{X}\left(t\right)</math> and <math>\mathbf{Y}\left(t\right)</math> has its peak value at <math>\tau=0</math> . |
Solution | Solution | ||
− | False. Consider \mathbf{Y}\left(t\right)=\mathbf{X}\left(t-\delta\right) where \delta\neq0 . | + | False. Consider <math>\mathbf{Y}\left(t\right)=\mathbf{X}\left(t-\delta\right)</math> where <math>\delta\neq0</math> . |
(g) | (g) | ||
− | The power spectral density of a real, wide-sense stationary random process \mathbf{X}\left(t\right) is a non-negative even function of \omega . | + | The power spectral density of a real, wide-sense stationary random process <math>\mathbf{X}\left(t\right)</math> is a non-negative even function of <math>\omega</math> . |
Solution | Solution | ||
Line 240: | Line 242: | ||
(h) | (h) | ||
− | If \mathbf{X} and \mathbf{Y} are two statistically independent random variables, then f_{\mathbf{X}}\left(x|y\right)=f_{\mathbf{X}}\left(x\right) . | + | If <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> are two statistically independent random variables, then <math>f_{\mathbf{X}}\left(x|y\right)=f_{\mathbf{X}}\left(x\right)</math> . |
Solution. | Solution. | ||
− | True. P\left(\mathbf{\left\{ X=x\right\} }|\left\{ \mathbf{Y}=y\right\} \right)=\frac{P\left(\left\{ \mathbf{X}=x\right\} \cap\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=\frac{P\left(\left\{ \mathbf{X}=x\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=P\left(\left\{ \mathbf{X}=x\right\} \right). | + | True. <math>P\left(\mathbf{\left\{ X=x\right\} }|\left\{ \mathbf{Y}=y\right\} \right)=\frac{P\left(\left\{ \mathbf{X}=x\right\} \cap\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=\frac{P\left(\left\{ \mathbf{X}=x\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=P\left(\left\{ \mathbf{X}=x\right\} \right).</math> |
− | f_{\mathbf{X}}\left(x|y\right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{Y}}\left(y\right)}=\frac{f_{\mathbf{X}}\left(x\right)\cdot f_{\mathbf{Y}}\left(y\right)}{f_{\mathbf{Y}}\left(y\right)}=f_{\mathbf{X}}\left(x\right). | + | <math>f_{\mathbf{X}}\left(x|y\right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{Y}}\left(y\right)}=\frac{f_{\mathbf{X}}\left(x\right)\cdot f_{\mathbf{Y}}\left(y\right)}{f_{\mathbf{Y}}\left(y\right)}=f_{\mathbf{X}}\left(x\right).</math> |
(i) | (i) | ||
− | If \mathbf{X} and \mathbf{Y} are two random variables, and f_{X}\left(x|y\right)=f_{X}\left(x\right) , then \mathbf{X} and \mathbf{Y} are statistically independent. | + | If <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> are two random variables, and <math>f_{X}\left(x|y\right)=f_{X}\left(x\right)</math> , then <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> are statistically independent. |
Solution | Solution | ||
Line 258: | Line 260: | ||
(j) | (j) | ||
− | If \left\{ \mathbf{X}_{n}\right\} is a sequence of random variables that converges to a random variable \mathbf{X} as n\rightarrow\infty , then \left\{ \mathbf{X}_{n}\right\} converges to \mathbf{X} in the means-square sense. | + | If <math>\left\{ \mathbf{X}_{n}\right\}</math> is a sequence of random variables that converges to a random variable <math>\mathbf{X}</math> as <math>n\rightarrow\infty</math> , then <math>\left\{ \mathbf{X}_{n}\right\}</math> converges to <math>\mathbf{X}</math> in the means-square sense. |
Solution | Solution | ||
− | False. The explanation at first is about converge in almost everywhere. \left(a.e.\right)\nRightarrow\left(m.s.\right) and \left(m.s.\right)\nRightarrow\left(a.e.\right) . | + | False. The explanation at first is about converge in almost everywhere. <math>\left(a.e.\right)\nRightarrow\left(m.s.\right)</math> and <math>\left(m.s.\right)\nRightarrow\left(a.e.\right)</math> . |
---- | ---- |
Revision as of 12:08, 21 November 2010
6.2 MRB 1994 Final
1. (15 pts.)
Three boxes that appear identical contain the following combinations of coins: Box X - 2 quaters; Box Y - 1 quaters, 2 dimes; Box Z - 1 quater, 1 dime. One of the boxes is selected at random, and a coin is selected at random from that box. The coin selected is a quater. What is the probability that the box selected contains at least one dime?
Solution
• We can define the events as
– A = Box selected at random contains at least one dime.
– Q = Coin drawn from box selected is a quater.
– X = Box X is selected.
– Y = Box Y is selected.
– Z = Box Z is selected.
• From the given information, we have $ P\left(X\right)=P\left(Y\right)=P\left(Z\right)=1/3 . P\left(Q|X\right)=1,P\left(Q|Y\right)=1/3,P\left(Q|Z\right)=1/2 $ .
• By using Bayes' theorem, $ P\left(A|Q\right) $ is
$ P\left(A|Q\right)=\frac{P\left(A\cap Q\right)}{P\left(Q\right)}=\frac{P\left(\left(Y\cup Z\right)\cap Q\right)}{P\left(Q\right)}=\frac{P\left(Y\cap Q\right)\cup P\left(Z\cap Q\right)}{P\left(Q\cap X\right)+P\left(Q\cap Y\right)+P\left(Q\cap Z\right)} $$ =\frac{P\left(Y\cap Q\right)+P\left(Z\cap Q\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)} $$ =\frac{P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)}{P\left(Q|X\right)P\left(X\right)+P\left(Q|Y\right)P\left(Y\right)+P\left(Q|Z\right)P\left(Z\right)} $$ =\frac{P\left(Q|Y\right)+P\left(Q|Z\right)}{P\left(Q|X\right)+P\left(Q|Y\right)+P\left(Q|Z\right)}=\frac{\frac{1}{3}+\frac{1}{2}}{1+\frac{1}{3}+\frac{1}{2}}=\frac{\frac{5}{6}}{\frac{11}{6}}=\frac{5}{11}. $
2. (20 pts.)
Multiple Choice Problems: Select the single best answer to each of the following four multiple choice questions by circling the letter in fron of the answer. There is space to work out the problems on the next page if needed.
I.
Consider a random experiment with probability space $ \left(\mathcal{S},\mathcal{F},P\right) $ and let $ A\in\mathcal{F} $ and $ B\in\mathcal{F} $ . Let $ P\left(A\right)=1/3 , P\left(B\right)=1/3 $ , $ and P\left(A\cap B\right)=1/4 $ . Find $ P\left(A|\bar{B}\right) $ .
A. 1/12 B. 1/8 C. 1/6 D. 1/4 E. 1/3
Solution
$ P\left(A|\bar{B}\right)=\frac{P\left(A\cap\bar{B}\right)}{P\left(\bar{B}\right)}=\frac{P\left(A\cap\bar{B}\right)}{1-P\left(B\right)}=\frac{P\left(A\right)-P\left(A\cap B\right)}{1-P\left(B\right)}=\frac{\frac{1}{3}-\frac{1}{4}}{1-\frac{1}{3}}=\frac{\frac{1}{12}}{\frac{2}{3}}=\frac{1}{12}\cdot\frac{3}{2}=\frac{1}{8}. $
II.
Let $ \mathbf{X} $ and $ \mathbf{Y} $ be two jointly distributed random variables with joint pdf
$ f\left(x,y\right)=\left\{ \begin{array}{lll} e^{-\left(x+y\right)} \text{, for }x\geq0\text{ and }y\geq0,\\ 0 \text{, elsewhere.} \end{array}\right. $
Find $ P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>1/2\right\} \right) $ .
A. $ 1/\sqrt{e} $ B. $ \left(2\sqrt{e}-1\right)/2\sqrt{e} $ C. $ \left(1-2\sqrt{e}\right)/2\sqrt{e} $ D. $ 2\sqrt{e}/\left(2\sqrt{e}-1\right) $ E. $ 2\sqrt{e}/\left(1-2\sqrt{e}\right) $
Solution
By using Bayes' theroem,
$ P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} \cap\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)}{P\left(\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)}. $
$ P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} \cap\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\int_{1/2}^{\infty}\int_{0}^{x}e^{-\left(x+y\right)}dydx=\int_{1/2}^{\infty}-e^{-\left(x+y\right)}\Bigl|_{0}^{x}dx $$ =\int_{1/2}^{\infty}\left[e^{-x}-e^{-2x}\right]dx=-e^{-x}+\frac{1}{2}e^{-2x}\Bigl|_{1/2}^{\infty}=e^{-\frac{1}{2}}-\frac{1}{2}e^{-1}. $
$ P\left(\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\int_{1/2}^{\infty}e^{-\left(x+y\right)}dx=-e^{-\left(x+y\right)}\Bigl|_{1/2}^{\infty}=e^{-\left(\frac{1}{2}+y\right)}. $
$ P\left(\left\{ \mathbf{X}>\mathbf{Y}\right\} |\left\{ \mathbf{X}>\frac{1}{2}\right\} \right)=\frac{e^{-\frac{1}{2}}-\frac{1}{2}e^{-1}}{e^{-\frac{1}{2}}}=\frac{2\sqrt{e}-1}{2\sqrt{e}}. $
III.
Let $ \mathbf{X} $ be a random variable with mean 2 , variance 8 , and moment generating function $ \phi_{\mathbf{X}}\left(s\right)=E\left\{ e^{s\mathbf{X}}\right\} $ . Find the first three terms in the series expansion of $ \phi_{\mathbf{X}}\left(s\right) $ about zero. (Hint: The moment generating theorem).
A. $ 2s+2s^{2} $ B. $ 1+2s+6s^{2} $ C. $ 1+2s+2s^{2} $ D. $ 1+2s+4s^{2} $ E. $ 1+2s+12s^{2} $
Recall
According to the series expansion, $ e^{\lambda}=\sum_{k=0}^{\infty}\frac{\lambda^{k}}{k!} $ .
Solution
$ \phi_{\mathbf{X}}\left(s\right)=E\left[e^{s\mathbf{X}}\right]=E\left[1+s\mathbf{X}+\frac{s^{2}\mathbf{X}^{2}}{2}+\cdots\right]=1+E\left[\mathbf{X}\right]s+\frac{E\left[\mathbf{X}^{2}\right]s^{2}}{2}+\cdots=1+2s+6s^{2}. $
Since $ E\left[\mathbf{X}^{2}\right]=Var\left[\mathbf{X}\right]+\left(E\left[\mathbf{X}\right]\right)^{2}=8+4=12 $ .
IV.
Find the characteristic function $ \Phi\left(\omega\right) $ of an exponentially distributed random variable with mean $ \mu $ .
A. $ \exp\left\{ \mu\left(e^{i\omega}-1\right)\right\} $ B. $ \exp\left\{ \mu e^{i\omega}\right\} -1 $ C. $ \left(1-i\omega\mu\right)^{-1} $ D. $ \left(1+i\omega\mu\right)^{-2} $ E. $ e^{i\omega\mu}e^{-\frac{1}{2}\omega^{2}\mu^{2}} $
Solution
$ \Phi\left(\omega\right)=E\left[e^{i\omega\mathbf{X}}\right]=\int_{0}^{\infty}\frac{1}{\mu}e^{-\frac{x}{\mu}}e^{i\omega x}dx=\frac{1}{\mu}\int_{0}^{\infty}e^{-x\left(1/\mu-i\omega\right)}=\frac{1}{\mu}\cdot\frac{e^{-x\left(1/\mu-i\omega\right)}}{-\left(1/\mu-i\omega\right)}\biggl|_{0}^{\infty} $$ =\frac{1}{\mu}\cdot\frac{1}{\left(1/\mu-i\omega\right)}=\frac{1}{1-i\omega\mu}=\left(1-i\omega\mu\right)^{-1}. $
$ \because\frac{1}{\mu}-i\omega>0 $ because $ i\omega $ is a imaginary term.
3. (15 pts.)
Let $ \left\{ t_{k}\right\} $ be a set of Poisson points with parameter \lambda on the positive real line such that if $ \mathbf{N}\left(t_{1},t_{2}\right) $ is defined as the number of points in the interval $ \left(t_{1},t_{2}\right] $ , then
$ P\left(\left\{ \mathbf{N}\left(t_{1},t_{2}\right)=k\right\} \right)=\frac{\left[\lambda\left(t_{2}-t_{1}\right)\right]^{k}e^{-\lambda\left(t_{2}-t_{1}\right)}}{k!},\quad k=0,1,2,\cdots,\quad t_{2}>t_{1}\geq0. $
Let $ \mathbf{X}\left(t\right)=\mathbf{N}\left(0,t\right) $ be the Poisson counting process associated with these points for $ t>0\;\left(n.b.,\;\mathbf{X}\left(0\right)=0\right) $
(a) Find the mean of $ \mathbf{X}\left(t\right) $ .
$ \Phi_{\mathbf{X}\left(t\right)}\left(\omega\right)=E\left[e^{i\omega\mathbf{X}\left(t\right)}\right]=\sum_{k=0}^{\infty}e^{i\omega k}\frac{\left(\lambda t\right)^{k}e^{-\lambda t}}{k!}=e^{-\lambda t}\sum_{k=0}^{\infty}\frac{\left[e^{i\omega}\lambda t\right]^{k}}{k!}=e^{\lambda t\left[e^{i\omega}-1\right]}. $
$ \phi_{\mathbf{X}}\left(s\right)=e^{\lambda t\left[e^{s}-1\right]}. $
$ E\left[\mathbf{X}\left(t\right)\right]=\frac{d\phi_{\mathbf{X}}\left(s\right)}{ds}\biggl|_{s=0}=e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}\biggl|_{s=0}=\lambda t. $
Alternative solution: $ \mathbf{X}\left(t\right) $ is Poisson process with parameter $ \lambda t \Rightarrow E\left[\mathbf{X}\left(t\right)\right]=Var\left[\mathbf{X}\left(t\right)\right]=\lambda t $ .
(b) Find the variance of $ \mathbf{X}\left(t\right) $ .
$ E\left[\mathbf{X}\left(t\right)^{2}\right]=\frac{d^{2}\phi_{\mathbf{X}\left(t\right)}\left(s\right)}{ds^{2}}\left|_{s=0}\right.=\frac{d}{ds}\left[e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}\right]\left|_{s=0}\right.=\lambda te^{s}e^{\lambda t\left[e^{s}-1\right]}\lambda te^{s}+\lambda te^{s}e^{\lambda t\left[e^{s}-1\right]}\left|_{s=0}\right.=\left(\lambda t\right)^{2}+\lambda t. $
$ Var\left[\mathbf{X}\left(t\right)\right]=E\left[\mathbf{X}\left(t\right)^{2}\right]-\left(E\left[\mathbf{X}\left(t\right)\right]\right)^{2}=\left(\lambda t\right)^{2}+\lambda t-\left(\lambda t\right)^{2}=\lambda t. $
Alternative solution: $ \mathbf{X}\left(t\right) $ is Poisson process with parameter $ \lambda t \Rightarrow E\left[\mathbf{X}\left(t\right)\right]=Var\left[\mathbf{X}\left(t\right)\right]=\lambda t . $
(c) Derive an expression for the autocorrelation function of $ \mathbf{X}\left(t\right) $ .
Assume $ t_{2}>t_{1} $ .
$ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{X}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)+\mathbf{X}\left(t_{1}\right)\right]\right] $$ =E\left[\mathbf{X}\left(t_{1}\right)\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right] $$ =E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{X}\left(t_{2}\right)-\mathbf{X}\left(t_{1}\right)\right]+E\left[\mathbf{X}^{2}\left(t_{1}\right)\right] $$ =\left(\lambda t_{1}\right)\lambda\left(t_{2}-t_{1}\right)+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}-\lambda^{2}t_{1}^{2}+\lambda^{2}t_{1}^{2}+\lambda t_{1}=\lambda^{2}t_{1}t_{2}+\lambda t_{1}. $
Similarly, for $ t_{2}<t_{1} $ , $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\lambda^{2}t_{1}t_{2}+\lambda t_{2} $ .
$ \therefore R_{\mathbf{XX}}\left(t_{1},t_{2}\right)=\lambda^{2}t_{1}t_{2}+\lambda\min\left(t_{1},t_{2}\right). $
$ \because $ Recall: $ Var\left[\mathbf{X}\left(t_{1}\right)\right]=E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]-\left(E\left[\mathbf{X}\left(t_{1}\right)\right]\right)^{2}\Longrightarrow E\left[\mathbf{X}^{2}\left(t_{1}\right)\right]=Var\left[\mathbf{X}\left(t_{1}\right)\right]+\left(E\left[\mathbf{X}\left(t_{1}\right)\right]\right)^{2} $ .
(d) Is $ \mathbf{X}\left(t\right) $ wide-sense stationary? Explain your answer.
No, $ \mathbf{X}\left(t\right) $ is not WSS, because $ E\left[\mathbf{X}\left(t\right)\right]=\lambda t $ is not constant.
4. (15 pts.)
Let $ \mathbf{X} $ be a continuous random variable with pdf $ f_{\mathbf{X}}\left(x\right) $ , mean $ \mu $ , and variance $ \sigma^{2} $ . Prove the Chebyshev Inequality:$ P\left(\left\{ \mathbf{X}-\mu\right\} \geq\epsilon\right)\leq\frac{\sigma^{2}}{\epsilon^{2}} $, where $ \epsilon $ is any positive constant.
Solution
You can find the proof of Chebyshev inequality [CS1ChebyshevInequality].
5. (15 pts.)
Let $ \mathbf{X}\left(t\right) $ be a zero-mean wide-sense stationary Gaussian white noise process with autocorrelation function $ R_{\mathbf{XX}}\left(\tau\right)=S_{0}\delta\left(\tau\right) $ . Suppose that $ \mathbf{X}\left(t\right) $ is the input to a linear time invariant system with impulse response $ h\left(t\right)=e^{-\alpha t}\cdot1_{\left[0,\infty\right)}\left(t\right) $, where $ \alpha $ is a positive constant. Let $ \mathbf{Y}\left(t\right) $ be the output of the system and assume that the input has been applied to the system for all time.
(a) What is the mean of $ \mathbf{Y}\left(t\right) $ ?
$ E\left[\mathbf{Y}\left(t\right)\right]=E\left[\int_{-\infty}^{\infty}h\left(\tau\right)\mathbf{X}\left(t-\tau\right)d\tau\right]=\int_{-\infty}^{\infty}h\left(\tau\right)E\left[\mathbf{X}\left(t-\tau\right)\right]d\tau=\int_{-\infty}^{\infty}h\left(\tau\right)\cdot0d\tau=0. $
(b) What is the power spectral density of $ \mathbf{Y}\left(t\right) $ ?
$ S_{\mathbf{XX}}\left(\omega\right)=\int_{-\infty}^{\infty}S_{0}\delta\left(\tau\right)e^{-i\omega\tau}d\tau=S_{0}. $
$ H\left(\omega\right)=\int_{-\infty}^{\infty}h\left(t\right)e^{-i\omega t}dt=\int_{0}^{\infty}e^{-\alpha t}e^{-i\omega t}dt=\int_{0}^{\infty}e^{-\left(\alpha+i\omega\right)t}dt=\frac{e^{-\left(\alpha+i\omega\right)t}}{-\left(\alpha+i\omega\right)}\biggl|_{0}^{\infty}=\frac{1}{\alpha+i\omega}. $
$ S_{\mathbf{YY}}\left(\omega\right)=S_{\mathbf{XX}}\left(\omega\right)\left|H\left(\omega\right)\right|^{2}=S_{\mathbf{XX}}\left(\omega\right)H\left(\omega\right)H^{*}\left(\omega\right)=S_{0}\cdot\frac{1}{\alpha+i\omega}\cdot\frac{1}{\alpha-i\omega}=\frac{S_{0}}{\alpha^{2}+\omega^{2}}. $
(c) What is the autocorrelation function of $ \mathbf{Y}\left(t\right) $ ?
$ S_{\mathbf{YY}}\left(\omega\right)=\frac{S_{0}}{\alpha^{2}+\omega^{2}}=\left(\frac{S_{0}}{2\alpha}\right)\frac{2\alpha}{\alpha^{2}+\omega^{2}}\leftrightarrow\left(\frac{S_{0}}{2\alpha}\right)e^{-\alpha\left|\tau\right|}=R_{\mathbf{YY}}\left(\tau\right). $
$ \because e^{-\alpha\left|\tau\right|}\leftrightarrow\frac{2\alpha}{\alpha^{2}+\omega^{2}}\text{ (on the table given)}. $
If there is no table, then
$ R_{\mathbf{YY}}\left(\tau\right)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_{\mathbf{YY}}\left(\omega\right)e^{i\omega\tau}d\omega=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{S_{0}}{\alpha^{2}+\omega^{2}}\cdot e^{i\omega\tau}d\omega. $
(d) Write an expression for the second-order density $ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right) $ of $ \mathbf{Y}\left(t\right) $ .
$ \mathbf{Y}\left(t\right) $ is a WSS Gaussian random process with $ E\left[\mathbf{Y}\left(t\right)\right]=0 , \sigma_{\mathbf{Y}\left(t\right)}^{2}=R_{\mathbf{YY}}\left(0\right)=\frac{S_{0}}{2\alpha} $ .
$ r_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}=r\left(t_{1}-t_{2}\right)=\frac{C_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{\sqrt{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}}=\frac{R_{\mathbf{YY}}\left(t_{1}-t_{2}\right)}{R_{\mathbf{YY}}\left(0\right)}=e^{-\alpha\left|t_{1}-t_{2}\right|}. $
$ f_{\mathbf{Y}\left(t_{1}\right)\mathbf{Y}\left(t_{2}\right)}\left(y_{1},y_{2}\right)=\frac{1}{2\pi\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}\sqrt{1-r^{2}}}\exp\left\{ \frac{-1}{2\left(1-r^{2}\right)}\left[\frac{y_{1}^{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}^{2}}-\frac{2ry_{1}y_{2}}{\sigma_{\mathbf{Y}\left(t_{1}\right)}\sigma_{\mathbf{Y}\left(t_{2}\right)}}+\frac{y_{2}^{2}}{\sigma_{\mathbf{Y}\left(t_{2}\right)}^{2}}\right]\right\} $$ =\frac{1}{2\pi\frac{S_{0}}{2\alpha}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-1}{2\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[\frac{y_{1}^{2}}{S_{0}/2\alpha}-\frac{2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}}{S_{0}/2\alpha}+\frac{y_{2}^{2}}{S_{0}/2\alpha}\right]\right\} $$ =\frac{\alpha}{\pi S_{0}\sqrt{1-e^{-2\alpha\left|t_{1}-t_{2}\right|}}}\exp\left\{ \frac{-\alpha}{S_{0}\left(1-e^{-2\alpha\left|t_{1}-t_{2}\right|}\right)}\left[y_{1}^{2}-2y_{1}y_{2}e^{-\alpha\left|t_{1}-t_{2}\right|}+y_{2}^{2}\right]\right\} $ .
6. (20 pts.)
(a)
Let A , B , and C be three events defined on a random experiment. If $ P\left(A\cap B\cap C\right)=P\left(A\right)P\left(B\right)P\left(C\right) $ , then A , B , and C are statistically independent.
Recall
Two events A and B are independent iff $ P\left(A\cap B\right)=P\left(A\right)P\left(B\right) $ .
Solution
False. Must also know $ P(A\cap B)=P\left(A\right)P\left(B\right) $ , $ P\left(B\cap C\right)=P\left(B\right)P\left(C\right) $ , and $ P\left(C\cap A\right)=P\left(C\right)P\left(A\right) $ .
(b)
If the autocorrelation function $ R_{\mathbf{X}}\left(t_{1},t_{2}\right) $ of random process $ \mathbf{X}\left(t\right) $ can be written as a function of the time difference $ t_{2}-t_{1} $ , then $ \mathbf{X}\left(t\right) $ is wide-sense stationary.
Solution
False. $ E\left[\mathbf{X}\left(t\right)\right] $ must also be constant.
(c)
All stationary random processes are wide-sense stationary.
Solution
True.
(d)
The autocorrelation function $ R_{\mathbf{XX}}\left(\tau\right) $ of a real wide-sense stationary random process $ \mathbf{X}\left(t\right) $ is nonnegative for all $ \tau $ .
Solution
False. $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ is non-negative definite. However, it does not mean that $ R_{\mathbf{XX}}\left(t_{1},t_{2}\right) $ is nonnegative.
(e)
Let $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ be two zero-mean statistically independent, jointly wide-sense stationary random processes. Then the cross-correlation function $ R_{\mathbf{XY}}\left(\tau\right)=0 $ for all $ \tau $ .
Solution
True.
$ R_{\mathbf{XY}}\left(t_{1},t_{2}\right)=E\left[\mathbf{X}\left(t_{1}\right)\mathbf{Y}^{*}\left(t_{2}\right)\right]=E\left[\mathbf{X}\left(t_{1}\right)\right]E\left[\mathbf{Y}^{*}\left(t_{2}\right)\right]=0\cdot0=0. $
(f)
The cross-correlation function $ R_{\mathbf{XY}}\left(\tau\right) $ of two real, jointly wide-sense stationary random process $ \mathbf{X}\left(t\right) $ and $ \mathbf{Y}\left(t\right) $ has its peak value at $ \tau=0 $ .
Solution
False. Consider $ \mathbf{Y}\left(t\right)=\mathbf{X}\left(t-\delta\right) $ where $ \delta\neq0 $ .
(g)
The power spectral density of a real, wide-sense stationary random process $ \mathbf{X}\left(t\right) $ is a non-negative even function of $ \omega $ .
Solution
True.
(h)
If $ \mathbf{X} $ and $ \mathbf{Y} $ are two statistically independent random variables, then $ f_{\mathbf{X}}\left(x|y\right)=f_{\mathbf{X}}\left(x\right) $ .
Solution.
True. $ P\left(\mathbf{\left\{ X=x\right\} }|\left\{ \mathbf{Y}=y\right\} \right)=\frac{P\left(\left\{ \mathbf{X}=x\right\} \cap\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=\frac{P\left(\left\{ \mathbf{X}=x\right\} \right)\cdot P\left(\left\{ \mathbf{Y}=y\right\} \right)}{P\left(\left\{ \mathbf{Y}=y\right\} \right)}=P\left(\left\{ \mathbf{X}=x\right\} \right). $
$ f_{\mathbf{X}}\left(x|y\right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{Y}}\left(y\right)}=\frac{f_{\mathbf{X}}\left(x\right)\cdot f_{\mathbf{Y}}\left(y\right)}{f_{\mathbf{Y}}\left(y\right)}=f_{\mathbf{X}}\left(x\right). $
(i)
If $ \mathbf{X} $ and $ \mathbf{Y} $ are two random variables, and $ f_{X}\left(x|y\right)=f_{X}\left(x\right) $ , then $ \mathbf{X} $ and $ \mathbf{Y} $ are statistically independent.
Solution
True.
(j)
If $ \left\{ \mathbf{X}_{n}\right\} $ is a sequence of random variables that converges to a random variable $ \mathbf{X} $ as $ n\rightarrow\infty $ , then $ \left\{ \mathbf{X}_{n}\right\} $ converges to $ \mathbf{X} $ in the means-square sense.
Solution
False. The explanation at first is about converge in almost everywhere. $ \left(a.e.\right)\nRightarrow\left(m.s.\right) $ and $ \left(m.s.\right)\nRightarrow\left(a.e.\right) $ .