Line 47: | Line 47: | ||
* [[ECE438_Week13_Quiz_Q3sol|Solution]]. | * [[ECE438_Week13_Quiz_Q3sol|Solution]]. | ||
---- | ---- | ||
− | Q4. | + | Q4. Consider a 3X3 FIR filter with coefficients h[m,n] <br/> |
+ | |||
+ | {| class="wikitable" style="text-align:center" border="1" cellpadding="2" cellspacing="2" width="20%" | ||
+ | |+ m | ||
+ | ! n !! -1!! 0 !! 1 | ||
+ | |- | ||
+ | ! 1 | ||
+ | | -0.5 || 0 || 0.5 | ||
+ | |- | ||
+ | ! 0 | ||
+ | | 0 || 1 || 0 | ||
+ | |- | ||
+ | ! -1 | ||
+ | |0.5 ||0 || -0.5 | ||
+ | |} | ||
+ | |||
+ | a. Find a difference equation that can be used to implement this filter.<br/> | ||
+ | b. Find the output image that results when this filter is applied to the input image shown below:<br/> | ||
+ | |||
+ | 0 0 0 0 0 0 0 0 0 0 0 <br/> | ||
+ | 0 0 0 0 0 1 0 0 0 0 0 <br/> | ||
+ | 0 0 0 0 1 1 1 0 0 0 0 <br/> | ||
+ | 0 0 0 1 1 1 1 1 0 0 0 <br/> | ||
+ | 0 0 1 1 1 1 1 1 1 0 0 <br/> | ||
+ | 0 1 1 1 1 1 1 1 1 1 0 <br/> | ||
+ | 0 1 1 1 1 1 1 1 1 1 0 <br/> | ||
+ | 0 1 1 1 1 1 1 1 1 1 0 <br/> | ||
+ | 0 1 1 1 1 1 1 1 1 1 0 <br/> | ||
+ | 0 1 1 1 1 1 1 1 1 1 0 <br/> | ||
+ | 0 0 0 0 0 0 0 0 0 0 0 <br/> | ||
+ | |||
+ | c. Find a simple expression for the frequency response H(<math>\mu ,\nu</math>) of this filter.<br/> | ||
* [[ECE438_Week13_Quiz_Q4sol|Solution]]. | * [[ECE438_Week13_Quiz_Q4sol|Solution]]. |
Revision as of 10:58, 17 November 2010
Quiz Questions Pool for Week 13
- Under construction --Zhao
Q1. Show that the DTFT of time-reversal, $ x[-n]\,\! $, is $ X(-\omega)\,\! $
Q2. Consider the discrete-time signal
- $ x[n]=\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2]. $
a) Determine the DTFT $ X(\omega) $ of x[n] and the DTFT of $ Y(\omega) $ of y[n]=x[-n].
b) Using your result from part a), compute
- $ x[n]* y[n] $.
c) Consider the discrete-time signal
- $ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. $.
Obtain the 4-point circular convolution of x[n] and z[n].
d) When computing the N-point circular convolution of x[n] and the signal
- $ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. $.
how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?
- Same as HW8 Q3 available here.
Q3. Consider the discrete-time signal
- $ x[n]=\delta[n] $
a) Obtain the N-point DFT X[k] of x[n].
b) Obtain the signal y[n] whose DFT is $ (W_N^{k}+W_N^{2k}+W_N^{3k}) X[k] $.
c) Now fix $ N=4 $. Compute 4-point circular convolution between x[n] and the signal
- $ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]. $
Q4. Consider a 3X3 FIR filter with coefficients h[m,n]
n | -1 | 0 | 1 |
---|---|---|---|
1 | -0.5 | 0 | 0.5 |
0 | 0 | 1 | 0 |
-1 | 0.5 | 0 | -0.5 |
a. Find a difference equation that can be used to implement this filter.
b. Find the output image that results when this filter is applied to the input image shown below:
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0
c. Find a simple expression for the frequency response H($ \mu ,\nu $) of this filter.
Q5.
Back to ECE 438 Fall 2010 Lab Wiki Page
Back to ECE 438 Fall 2010