Line 47: Line 47:
 
* [[ECE438_Week13_Quiz_Q3sol|Solution]].
 
* [[ECE438_Week13_Quiz_Q3sol|Solution]].
 
----
 
----
Q4.  
+
Q4. Consider a 3X3 FIR filter with coefficients h[m,n] <br/>
 +
 
 +
{| class="wikitable" style="text-align:center" border="1" cellpadding="2" cellspacing="2" width="20%"
 +
|+ m
 +
! n !! -1!! 0 !! 1
 +
|-
 +
! 1
 +
| -0.5 || 0 || 0.5
 +
|-
 +
! 0
 +
| 0 || 1 || 0
 +
|-
 +
! -1
 +
|0.5 ||0 || -0.5
 +
|}
 +
 
 +
a. Find a difference equation that can be used to implement this filter.<br/>
 +
b. Find the output image that results when this filter is applied to the input image shown below:<br/>
 +
 
 +
0 0 0 0 0 0 0 0 0 0 0 <br/>
 +
0 0 0 0 0 1 0 0 0 0 0 <br/>
 +
0 0 0 0 1 1 1 0 0 0 0 <br/>
 +
0 0 0 1 1 1 1 1 0 0 0 <br/>
 +
0 0 1 1 1 1 1 1 1 0 0 <br/>
 +
0 1 1 1 1 1 1 1 1 1 0 <br/>
 +
0 1 1 1 1 1 1 1 1 1 0 <br/>
 +
0 1 1 1 1 1 1 1 1 1 0 <br/>
 +
0 1 1 1 1 1 1 1 1 1 0 <br/>
 +
0 1 1 1 1 1 1 1 1 1 0 <br/>
 +
0 0 0 0 0 0 0 0 0 0 0 <br/>
 +
 
 +
c. Find a simple expression for the frequency response H(<math>\mu ,\nu</math>) of this filter.<br/>
  
 
* [[ECE438_Week13_Quiz_Q4sol|Solution]].
 
* [[ECE438_Week13_Quiz_Q4sol|Solution]].

Revision as of 10:58, 17 November 2010


Quiz Questions Pool for Week 13

  • Under construction --Zhao

Q1. Show that the DTFT of time-reversal, $ x[-n]\,\! $, is $ X(-\omega)\,\! $


Q2. Consider the discrete-time signal

$ x[n]=\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2]. $

a) Determine the DTFT $ X(\omega) $ of x[n] and the DTFT of $ Y(\omega) $ of y[n]=x[-n].

b) Using your result from part a), compute

$ x[n]* y[n] $.

c) Consider the discrete-time signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. $.

Obtain the 4-point circular convolution of x[n] and z[n].

d) When computing the N-point circular convolution of x[n] and the signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. $.

how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?

  • Same as HW8 Q3 available here.

Q3. Consider the discrete-time signal

$ x[n]=\delta[n] $

a) Obtain the N-point DFT X[k] of x[n].

b) Obtain the signal y[n] whose DFT is $ (W_N^{k}+W_N^{2k}+W_N^{3k}) X[k] $.

c) Now fix $ N=4 $. Compute 4-point circular convolution between x[n] and the signal

$ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]. $

Q4. Consider a 3X3 FIR filter with coefficients h[m,n]

m
n -1 0 1
1 -0.5 0 0.5
0 0 1 0
-1 0.5 0 -0.5

a. Find a difference equation that can be used to implement this filter.
b. Find the output image that results when this filter is applied to the input image shown below:

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0

c. Find a simple expression for the frequency response H($ \mu ,\nu $) of this filter.


Q5.


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison