Line 11: Line 11:
 
Q2. Consider the discrete-time signal
 
Q2. Consider the discrete-time signal
  
<math>x[n]=2\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2].</math>
+
:<math>x[n]=\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2].</math>
  
 
a) Determine the DTFT <math>X(\omega)</math> of x[n] and the DTFT of <math>Y(\omega)</math> of y[n]=x[-n].
 
a) Determine the DTFT <math>X(\omega)</math> of x[n] and the DTFT of <math>Y(\omega)</math> of y[n]=x[-n].
Line 17: Line 17:
 
b) Using your result from part a), compute  
 
b) Using your result from part a), compute  
  
<math>x[n]* y[n]</math>.
+
:<math>x[n]* y[n]</math>.
  
 
c) Consider the discrete-time signal  
 
c) Consider the discrete-time signal  
  
<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. </math>.   
+
:<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. </math>.   
  
 
Obtain the 4-point circular convolution of x[n] and z[n].
 
Obtain the 4-point circular convolution of x[n] and z[n].
Line 27: Line 27:
 
d) When computing the N-point circular convolution of x[n] and the signal
 
d) When computing the N-point circular convolution of x[n] and the signal
  
<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. </math>.   
+
:<math>z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. </math>.   
  
 
how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?   
 
how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?   
Line 33: Line 33:
 
* Same as HW8 Q3 available [[ECE438_HW8_Solution|here]].
 
* Same as HW8 Q3 available [[ECE438_HW8_Solution|here]].
 
----
 
----
Q3.  
+
Q3. Consider the discrete-time signal
 +
 
 +
:<math>x[n]=\delta[n]</math>
 +
 
 +
a) Obtain the N-point DFT X[k] of x[n].
 +
 
 +
b) Obtain the signal y[n] whose DFT is <math> (W_N^{k}+W_N^{2k}+W_N^{3k}) X[k]</math>.
 +
 
 +
c) Now fix <math>N=4</math>. Compute 4-point circular convolution between x[n] and the signal
 +
 
 +
:<math>h[n]=\delta[n]+\delta[n-1]+\delta[n-2].</math>
  
 
* [[ECE438_Week13_Quiz_Q3sol|Solution]].
 
* [[ECE438_Week13_Quiz_Q3sol|Solution]].

Revision as of 10:41, 17 November 2010


Quiz Questions Pool for Week 13

  • Under construction --Zhao

Q1. Show that the DTFT of time-reversal, $ x[-n]\,\! $, is $ X(-\omega)\,\! $


Q2. Consider the discrete-time signal

$ x[n]=\delta[n]+5 \delta[n-1]+\delta[n-1]- \delta[n-2]. $

a) Determine the DTFT $ X(\omega) $ of x[n] and the DTFT of $ Y(\omega) $ of y[n]=x[-n].

b) Using your result from part a), compute

$ x[n]* y[n] $.

c) Consider the discrete-time signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod 4],& 0\leq n < 3,\\ 0 & \text{else }\end{array} \right. $.

Obtain the 4-point circular convolution of x[n] and z[n].

d) When computing the N-point circular convolution of x[n] and the signal

$ z[n]=\left\{ \begin{array}{ll}x[(-n)\mod N],& 0\leq n < N-1,\\ 0 & \text{else }\end{array} \right. $.

how should N be chosen to make sure that the result is the same as the usual convolution between x[n] and z[n]?

  • Same as HW8 Q3 available here.

Q3. Consider the discrete-time signal

$ x[n]=\delta[n] $

a) Obtain the N-point DFT X[k] of x[n].

b) Obtain the signal y[n] whose DFT is $ (W_N^{k}+W_N^{2k}+W_N^{3k}) X[k] $.

c) Now fix $ N=4 $. Compute 4-point circular convolution between x[n] and the signal

$ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]. $

Q4.


Q5.


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett