Line 5: Line 5:
 
----
 
----
  
Suppose <math>X(w)\,\!</math> is the DTFT of a discrete-time signal <math>x[n]\,\!</math>.
+
Suppose <math>X(\omega)\,\!</math> is the DTFT of a discrete-time signal <math>x[n]\,\!</math>.
  
 
What is the DTFT of the time-reversal <math>x[-n]\,\!</math>?
 
What is the DTFT of the time-reversal <math>x[-n]\,\!</math>?
  
<math>\begin{align} & \sum_{n=-\infty}^{\infty} x[-n]e^{-jwn} \\ & \quad (\text{change of variable} \;\; m=-n) \\ = & \sum_{m=-\infty}^{\infty} x[m]e^{jwm} = X(-w) \\ \end{align}</math>
+
<math>\begin{align} & \sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n} \\ & \quad (\text{change of variable} \;\; m=-n) \\ = & \sum_{m=-\infty}^{\infty} x[m]e^{j\omega m} = X(-\omega) \\ \end{align}</math>
  
 
----
 
----

Latest revision as of 10:24, 17 November 2010



Solution to Q1 of Week 13 Quiz Pool


Suppose $ X(\omega)\,\! $ is the DTFT of a discrete-time signal $ x[n]\,\! $.

What is the DTFT of the time-reversal $ x[-n]\,\! $?

$ \begin{align} & \sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n} \\ & \quad (\text{change of variable} \;\; m=-n) \\ = & \sum_{m=-\infty}^{\infty} x[m]e^{j\omega m} = X(-\omega) \\ \end{align} $


Back to Lab Week 13 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch