(New page: *ECE 600 Prerequisites)
 
Line 1: Line 1:
 +
1.3 Bayes' theorem
 +
 +
• = Bayes' rule
 +
 +
• <math>P\left(A|B\right)=\frac{P\left(A\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A\right)P\left(A\right)}{P\left(B\right)}</math>
 +
 +
• If <math>P\left(B\right)=\sum_{i}P\left(B\cap A_{i}\right)=\sum_{i}P\left(B|A_{i}\right)P\left(A_{i}\right)</math> , then <math>P\left(A_{i}|B\right)=\frac{P\left(A_{i}\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A_{i}\right)A_{i}}{\sum_{j}P\left(B|A_{j}\right)A_{j}}</math>
 +
 
*[[ECE 600 Prerequisites|ECE 600 Prerequisites]]
 
*[[ECE 600 Prerequisites|ECE 600 Prerequisites]]

Revision as of 12:09, 16 November 2010

1.3 Bayes' theorem

• = Bayes' rule

$ P\left(A|B\right)=\frac{P\left(A\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A\right)P\left(A\right)}{P\left(B\right)} $

• If $ P\left(B\right)=\sum_{i}P\left(B\cap A_{i}\right)=\sum_{i}P\left(B|A_{i}\right)P\left(A_{i}\right) $ , then $ P\left(A_{i}|B\right)=\frac{P\left(A_{i}\cap B\right)}{P\left(B\right)}=\frac{P\left(B|A_{i}\right)A_{i}}{\sum_{j}P\left(B|A_{j}\right)A_{j}} $

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010