Line 40: Line 40:
 
And for solutions to the three problems on p. 528, go to
 
And for solutions to the three problems on p. 528, go to
 
[http://www.math.purdue.edu/~bell/MA527/jing Bell's Jing things]
 
[http://www.math.purdue.edu/~bell/MA527/jing Bell's Jing things]
 +
 +
 +
Questions:
 +
 +
Is there a way to get all of the answers for the practice problems? I know you went over some of them in lecture, but I can't seem to find all of the answers, and I'd like to check.
 +
 +
I was also wondering if you could give us more practice problems like practice problem #11, because I'm still really confused (even though I attempted HW 12 and looked at the solutions). Or, could you at least show every step for practice problem #11?
 +
 +
 +
 +
  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  

Revision as of 20:23, 15 November 2010

Homework 12 Solutions

517: 1.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^1(-1)\cos(wx)\,dx+ \int_1^2(1)\cos(wx)\,dx \right)= $

$ =\sqrt{\frac{2}{\pi}}\left([-\frac{1}{w}\sin(wx)]_0^1 +[\frac{1}{w}\sin(wx)]_1^2\right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{1}{w}\left( -(\sin(w)-0)+(\sin(2w)-\sin(w)) \right)= $

$ =\sqrt{\frac{2}{\pi}}\ \frac{\sin(2w)-2\sin(w)}{w}. $

517: 2.

$ \hat{f}_c(w)=\sqrt{\frac{2}{\pi}}\left( \int_0^k x\cos(wx)\,dx\right)= $

$ =\sqrt{\frac{2}{\pi}}\left(\left[\frac{x}{w}\sin(wx)+\frac{1}{w^2}\cos(wx)\right]_0^k \right)= $

$ \sqrt{\frac{2}{\pi}}\left(\frac{k}{w}\sin(kw)+\frac{1}{w^2}\cos(kw) -\frac{1}{w^2}\right). $

517: 5. See page 2 of Bell's 11/10/2010 lecture at Lesson 33

517: 7. See p. 517: 7 Solution

And for solutions to the three problems on p. 528, go to Bell's Jing things


Questions:

Is there a way to get all of the answers for the practice problems? I know you went over some of them in lecture, but I can't seem to find all of the answers, and I'd like to check.

I was also wondering if you could give us more practice problems like practice problem #11, because I'm still really confused (even though I attempted HW 12 and looked at the solutions). Or, could you at least show every step for practice problem #11?



Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

EISL lab graduate

Mu Qiao