m
Line 1: Line 1:
== Example 1 ==
+
== Example. Two jointly distributed random variables ==
Two joinly distributed random variables <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> have joint pdf
+
 
 +
Two joinly distributed random variables <math>\mathbf{X}</math> and <math>\mathbf{Y}</math> have joint pdf  
  
 
<math>
 
<math>
Line 8: Line 9:
 
0 & ,\textrm{ elsewhere.}
 
0 & ,\textrm{ elsewhere.}
 
\end{array}\end{cases}  
 
\end{array}\end{cases}  
</math>
+
</math>  
  
=== (a) ===
+
=== (a) ===
Find the constant <math>c</math> such that <math>f_{\mathbf{XY}}(x,y)</math> is a valid pdf.
+
  
[[Image:ECE600_Example_Two_jointly_distributed_random_variables1.jpg]]
+
Find the constant <math>c</math> such that <math>f_{\mathbf{XY}}(x,y)</math> is a valid pdf.
 +
 
 +
[[Image:ECE600 Example Two jointly distributed random variables1.jpg]]  
  
 
<math>\iint_{\mathbf{R}^{2}}f_{\mathbf{XY}}\left(x,y\right)=c\cdot Area=1</math> where <math>Area=\frac{1}{2}</math>.  
 
<math>\iint_{\mathbf{R}^{2}}f_{\mathbf{XY}}\left(x,y\right)=c\cdot Area=1</math> where <math>Area=\frac{1}{2}</math>.  
Line 21: Line 23:
 
</math>  
 
</math>  
  
=== (b) ===
+
=== (b) ===
Find the conditional density of <math>\mathbf{Y}</math> conditioned on <math>\mathbf{X}=x</math>.
+
 
 +
Find the conditional density of <math>\mathbf{Y}</math> conditioned on <math>\mathbf{X}=x</math>.  
  
 
<math>
 
<math>
 
f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}.  
 
f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}.  
</math>
+
</math>  
  
 
<math>
 
<math>
 
f_{\mathbf{X}}(x)=\int_{-\infty}^{\infty}f_{\mathbf{XY}}\left(x,y\right)dy=\int_{0}^{1-x}2dy=2\left(1-x\right)\cdot\mathbf{1}_{\left[0,1\right]}(x).  
 
f_{\mathbf{X}}(x)=\int_{-\infty}^{\infty}f_{\mathbf{XY}}\left(x,y\right)dy=\int_{0}^{1-x}2dy=2\left(1-x\right)\cdot\mathbf{1}_{\left[0,1\right]}(x).  
</math>
+
</math>  
  
 
<math>
 
<math>
 
f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}=\frac{2}{2\left(1-x\right)}=\frac{1}{1-x}\textrm{ where }0\leq y\leq1-x\Longrightarrow\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right).  
 
f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}=\frac{2}{2\left(1-x\right)}=\frac{1}{1-x}\textrm{ where }0\leq y\leq1-x\Longrightarrow\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right).  
</math>
+
</math>  
  
=== (c) ===
+
=== (c) ===
Find the minimum mean-square error estimator <math>\hat{y}_{MMS}\left(x\right)</math> of <math>\mathbf{Y}</math> given that <math>\mathbf{X}=x</math>.
+
 
 +
Find the minimum mean-square error estimator <math>\hat{y}_{MMS}\left(x\right)</math> of <math>\mathbf{Y}</math> given that <math>\mathbf{X}=x</math>.  
  
 
<math>
 
<math>
 
\hat{y}_{MMS}\left(x\right)=E\left[\mathbf{Y}|\left\{ \mathbf{X}=x\right\} \right]=\int_{\mathbf{R}}yf_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)dy=\int_{0}^{1-x}\frac{y}{1-x}dy=\frac{y^{2}}{2\left(1-x\right)}\biggl|_{0}^{1-x}=\frac{1-x}{2}.  
 
\hat{y}_{MMS}\left(x\right)=E\left[\mathbf{Y}|\left\{ \mathbf{X}=x\right\} \right]=\int_{\mathbf{R}}yf_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)dy=\int_{0}^{1-x}\frac{y}{1-x}dy=\frac{y^{2}}{2\left(1-x\right)}\biggl|_{0}^{1-x}=\frac{1-x}{2}.  
</math>
+
</math>  
 +
 
 +
=== (d)  ===
  
=== (d) ===
 
 
Find a maximum aposteriori probability estimator.  
 
Find a maximum aposteriori probability estimator.  
  
 
<math>
 
<math>
 
\hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)\right\}   
 
\hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)\right\}   
</math>
+
</math>  
  
 
but <math>f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right)</math>. Any <math>\hat{y}\in\left[0,1-x\right]</math> is a MAP estimator. The MAP estimator is '''NOT''' unique.
 
but <math>f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right)</math>. Any <math>\hat{y}\in\left[0,1-x\right]</math> is a MAP estimator. The MAP estimator is '''NOT''' unique.

Revision as of 03:21, 15 November 2010

Example. Two jointly distributed random variables

Two joinly distributed random variables $ \mathbf{X} $ and $ \mathbf{Y} $ have joint pdf

$ f_{\mathbf{XY}}\left(x,y\right)=\begin{cases} \begin{array}{ll} c & ,\textrm{ for }x\geq0,y\geq0,\textrm{ and }x+y\leq1\\ 0 & ,\textrm{ elsewhere.} \end{array}\end{cases} $

(a)

Find the constant $ c $ such that $ f_{\mathbf{XY}}(x,y) $ is a valid pdf.

ECE600 Example Two jointly distributed random variables1.jpg

$ \iint_{\mathbf{R}^{2}}f_{\mathbf{XY}}\left(x,y\right)=c\cdot Area=1 $ where $ Area=\frac{1}{2} $.

$ \therefore c=2 $

(b)

Find the conditional density of $ \mathbf{Y} $ conditioned on $ \mathbf{X}=x $.

$ f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}. $

$ f_{\mathbf{X}}(x)=\int_{-\infty}^{\infty}f_{\mathbf{XY}}\left(x,y\right)dy=\int_{0}^{1-x}2dy=2\left(1-x\right)\cdot\mathbf{1}_{\left[0,1\right]}(x). $

$ f_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{f_{\mathbf{XY}}\left(x,y\right)}{f_{\mathbf{X}}(x)}=\frac{2}{2\left(1-x\right)}=\frac{1}{1-x}\textrm{ where }0\leq y\leq1-x\Longrightarrow\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right). $

(c)

Find the minimum mean-square error estimator $ \hat{y}_{MMS}\left(x\right) $ of $ \mathbf{Y} $ given that $ \mathbf{X}=x $.

$ \hat{y}_{MMS}\left(x\right)=E\left[\mathbf{Y}|\left\{ \mathbf{X}=x\right\} \right]=\int_{\mathbf{R}}yf_{\mathbf{Y}}\left(y|\left\{ \mathbf{X}=x\right\} \right)dy=\int_{0}^{1-x}\frac{y}{1-x}dy=\frac{y^{2}}{2\left(1-x\right)}\biggl|_{0}^{1-x}=\frac{1-x}{2}. $

(d)

Find a maximum aposteriori probability estimator.

$ \hat{y}_{MAP}\left(x\right)=\arg\max_{y}\left\{ f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)\right\} $

but $ f_{Y}\left(y|\left\{ \mathbf{X}=x\right\} \right)=\frac{1}{1-x}\cdot\mathbf{1}_{\left[0,1-x\right]}\left(y\right) $. Any $ \hat{y}\in\left[0,1-x\right] $ is a MAP estimator. The MAP estimator is NOT unique.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva