Line 40: Line 40:
 
|-
 
|-
 
| <math> \frac {d}{dx} \tan u = \frac{1}{\cos^2 u} \frac{du}{dx} </math>
 
| <math> \frac {d}{dx} \tan u = \frac{1}{\cos^2 u} \frac{du}{dx} </math>
 +
|-
 +
| <math> \frac {d}{dx} \cot u = - \frac{1}{\sin^2 u} \frac{du}{dx} </math>
 +
|-
 +
| <math> \frac {d}{dx} \frac{1}{\cos u} = \frac{\tan u}{\cos u} \frac{du}{dx} </math>
 +
|-
 +
| <math> \frac {d}{dx} \frac{1}{\sin u} = - \frac{\cot u}{\sin u} \frac{du}{dx} </math>
 
|-
 
|-
 
| <math> \frac {d}{dx} \arcsin u = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} \qquad ( - \frac{\pi}{2} < \arcsin u < \frac{\pi}{2} )</math>
 
| <math> \frac {d}{dx} \arcsin u = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} \qquad ( - \frac{\pi}{2} < \arcsin u < \frac{\pi}{2} )</math>
Line 45: Line 51:
 
| <math> \frac {d}{dx} \arccos u = - \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} \qquad ( 0 < \arccos u < \pi ) </math>
 
| <math> \frac {d}{dx} \arccos u = - \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} \qquad ( 0 < \arccos u < \pi ) </math>
 
|-
 
|-
 
+
| <math> \frac {d}{dx} \arctan u = \frac{1}{1+u^2} \frac{du}{dx} \qquad ( - \frac{\pi}{2} < \arctan u < \frac{\pi}{2} )</math>
 
+
| <span class="texhtml">sin'' u''</span>
+
| align="left" | <math>\cos u \frac{du}{dx}</math>
+
 
|-
 
|-
|   
+
| <math> \frac {d}{dx} \arccot u = - \frac{1}{1+u^2} \frac{du}{dx} \qquad ( 0 < \arccot u < \pi ) </math>
 +
|-  
 
| add function here  
 
| add function here  
 
|  derivative here
 
|  derivative here

Revision as of 20:21, 11 November 2010

Table of Derivatives
General Rules
Derivative of a constant $ \frac{d}{dx}\left( c \right) = 0, \ \text{ for any constant }c $
$ \frac{d}{dx}\left( c x \right) = c, \ \text{ for any constant }c $
Linearity $ \frac{d}{dx}\left( c_1 u_1+c_2 u_2 \right) = c_1 \frac{d}{dx}\left( u_1 \right)+c_2 \frac{d}{dx}\left( u_2 \right), \ \text{ for any constants }c_1, c_2 $
Please continue write a rule here
Leibnitz Rule for Successive Derivatives of a Product
first order $ \frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} $
second order $ \frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+ v \frac{d^2u }{dx^2} $
third order $ \frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} $ credit
n-th order $ \frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} + \left( \begin{array}{cc}n \\ 1 \end{array}\right) \frac{du }{dx}\frac{d^{n-1}v }{dx^{n-1}} + \left( \begin{array}{cc}n \\ 2 \end{array}\right) \frac{d^2u}{dx^2}\frac{d^{n-2}v }{dx^{n-2}}+ \ldots + v \frac{d^n u }{dx^n} $
Derivatives of trigonometric functions
$ \frac {d}{dx} \sin u = \cos u \frac{du}{dx} $
$ \frac {d}{dx} \cos u = - \sin u \frac{du}{dx} $
$ \frac {d}{dx} \tan u = \frac{1}{\cos^2 u} \frac{du}{dx} $
$ \frac {d}{dx} \cot u = - \frac{1}{\sin^2 u} \frac{du}{dx} $
$ \frac {d}{dx} \frac{1}{\cos u} = \frac{\tan u}{\cos u} \frac{du}{dx} $
$ \frac {d}{dx} \frac{1}{\sin u} = - \frac{\cot u}{\sin u} \frac{du}{dx} $
$ \frac {d}{dx} \arcsin u = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} \qquad ( - \frac{\pi}{2} < \arcsin u < \frac{\pi}{2} ) $
$ \frac {d}{dx} \arccos u = - \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} \qquad ( 0 < \arccos u < \pi ) $
$ \frac {d}{dx} \arctan u = \frac{1}{1+u^2} \frac{du}{dx} \qquad ( - \frac{\pi}{2} < \arctan u < \frac{\pi}{2} ) $
$ \frac {d}{dx} \arccot u = - \frac{1}{1+u^2} \frac{du}{dx} \qquad ( 0 < \arccot u < \pi ) $
add function here derivative here
Derivatives of exponential and logarithm functions
exponential eu $ e^u \frac{du}{dx} $
add function here derivative here
Derivatives of hyperbolic functions
hyperbolic sine $ \text{sh } u $ $ \text{ch } u \frac{du}{dx} $
add function here derivative here


Back to Collective Table of Formulas

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang