m |
|||
Line 57: | Line 57: | ||
iii. n = 0 <br/> | iii. n = 0 <br/> | ||
− | * [[ | + | * [[Media:Qpw12ece438fa10.pdf|Solution]]. |
---- | ---- | ||
Q4. | Q4. |
Revision as of 05:02, 10 November 2010
Quiz Questions Pool for Week 12
Q1. Consider a causal FIR filter of length M = 2 with impulse response
- $ h[n]=\delta[n-1]+\delta[n-2]\,\! $
a) Provide a closed-form expression for the 9-pt DFT of $ h[n] $, denoted $ H_9[k] $, as a function of $ k $. Simplify as much as possible.
b) Consider the sequence $ x[n] $ of length 9 below,
- $ x[n]=\text{cos}\left(\frac{2\pi}{3}n\right)(u[n]-u[n-9])\,\! $
$ y_9[n] $ is formed by computing $ X_9[k] $ as an 9-pt DFT of $ x[n] $, $ H_9[k] $ as an 9-pt DFT of $ h[n] $, and then $ y_9[n] $ as the 9-pt inverse DFT of $ Y_9[k] = X_9[k]H_9[k] $.
Express the result $ y_9[n] $ as a weighted sum of finite-length sinewaves similar to how $ x[n] $ is written above.
Q2. Consider the discrete-time signal
- $ x[n]=6\delta[n]+5 \delta[n-1]+4 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5]. $
a) Obtain the 6-point DFT X[k] of x[n].
b) Obtain the signal y[n] whose DFT is $ W_6^{-2k} X[k] $.
c) Compute six-point circular convolution between x[n] and the signal
- $ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]. $
- Same as HW8, Q2 available Solution.
Q3. Consider the signal
$ x[n] = \begin{cases} cos(\pi n / 8), & n < 0 \\ cos(\pi n / 3), & \mbox{else} \end{cases} $
and assume a rectangular window
$ w[n] = \begin{cases} 1, & |n| < 25 \\ 0, & \mbox{else} \end{cases} $
The STDFT is defined as
$ \begin{align} X(\omega,n) &= \sum_{k} x[k]w[n-k]e^{-j\omega k} \end{align} $
Compute the STDTFT for the following cases:
i. n < -25
ii. n > 25
iii. n = 0
Q4.
Q5.
Back to ECE 438 Fall 2010 Lab Wiki Page
Back to ECE 438 Fall 2010