Line 30: Line 30:
 
* Same as HW8, Q2 available [[ECE438_Week12_Quiz_Q2sol|Solution]].
 
* Same as HW8, Q2 available [[ECE438_Week12_Quiz_Q2sol|Solution]].
 
----
 
----
Q3.  
+
Q3. Consider the signal
 +
 
 +
<math>x[n] = \begin{cases}
 +
cos(\pi n / 8), & n < 0 \\
 +
cos(\pi n / 3), & \mbox{else}
 +
\end{cases}</math>
 +
 
 +
and assume a rectangular window
 +
 
 +
<math>w[n] = \begin{cases}
 +
1, & |n| < 25 \\
 +
0, & \mbox{else}
 +
\end{cases}</math>
 +
 
 +
The STDFT is defined as
 +
 
 +
<math>
 +
\begin{align}
 +
X(\omega,n) &= \sum_{k} x[k]w[n-k]e^{-j\omega k}
 +
\end{align}
 +
</math>
 +
 
 +
Compute the STDTFT for the following cases: <br/>
 +
i. n < -25 <br/>
 +
ii. n > 25 <br/>
 +
iii. n = 0 <br/>
  
 
* [[ECE438_Week12_Quiz_Q3sol|Solution]].
 
* [[ECE438_Week12_Quiz_Q3sol|Solution]].

Revision as of 04:56, 10 November 2010


Quiz Questions Pool for Week 12


Q1. Consider a causal FIR filter of length M = 2 with impulse response

$ h[n]=\delta[n-1]+\delta[n-2]\,\! $

a) Provide a closed-form expression for the 9-pt DFT of $ h[n] $, denoted $ H_9[k] $, as a function of $ k $. Simplify as much as possible.

b) Consider the sequence $ x[n] $ of length 9 below,

$ x[n]=\text{cos}\left(\frac{2\pi}{3}n\right)(u[n]-u[n-9])\,\! $

$ y_9[n] $ is formed by computing $ X_9[k] $ as an 9-pt DFT of $ x[n] $, $ H_9[k] $ as an 9-pt DFT of $ h[n] $, and then $ y_9[n] $ as the 9-pt inverse DFT of $ Y_9[k] = X_9[k]H_9[k] $.

Express the result $ y_9[n] $ as a weighted sum of finite-length sinewaves similar to how $ x[n] $ is written above.


Q2. Consider the discrete-time signal

$ x[n]=6\delta[n]+5 \delta[n-1]+4 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5]. $

a) Obtain the 6-point DFT X[k] of x[n].

b) Obtain the signal y[n] whose DFT is $ W_6^{-2k} X[k] $.

c) Compute six-point circular convolution between x[n] and the signal

$ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]. $

Q3. Consider the signal

$ x[n] = \begin{cases} cos(\pi n / 8), & n < 0 \\ cos(\pi n / 3), & \mbox{else} \end{cases} $

and assume a rectangular window

$ w[n] = \begin{cases} 1, & |n| < 25 \\ 0, & \mbox{else} \end{cases} $

The STDFT is defined as

$ \begin{align} X(\omega,n) &= \sum_{k} x[k]w[n-k]e^{-j\omega k} \end{align} $

Compute the STDTFT for the following cases:
i. n < -25
ii. n > 25
iii. n = 0


Q4.


Q5.


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch