Line 18: Line 18:
 
Q2. Consider the discrete-time signal
 
Q2. Consider the discrete-time signal
  
<math>x[n]=6\delta[n]+5 \delta[n-1]+4 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5].</math>
+
:<math>x[n]=6\delta[n]+5 \delta[n-1]+4 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5].</math>
  
 
a) Obtain the 6-point DFT X[k] of x[n].  
 
a) Obtain the 6-point DFT X[k] of x[n].  
Line 26: Line 26:
 
c) Compute six-point circular convolution between x[n] and the signal
 
c) Compute six-point circular convolution between x[n] and the signal
  
<math>h[n]=\delta[n]+\delta[n-1]+\delta[n-2].</math>
+
:<math>h[n]=\delta[n]+\delta[n-1]+\delta[n-2].</math>
  
 
* [[ECE438_Week12_Quiz_Q2sol|Solution]].
 
* [[ECE438_Week12_Quiz_Q2sol|Solution]].

Revision as of 10:27, 9 November 2010


Quiz Questions Pool for Week 12


Q1. Consider a causal FIR filter of length M = 2 with impulse response

$ h[n]=\delta[n-1]+\delta[n-2]\,\! $

a) Provide a closed-form expression for the 9-pt DFT of $ h[n] $, denoted $ H_9[k] $, as a function of $ k $. Simplify as much as possible.

b) Consider the sequence $ x[n] $ of length 9 below,

$ x[n]=\text{cos}\left(\frac{2\pi}{3}n\right)(u[n]-u[n-9])\,\! $

$ y_9[n] $ is formed by computing $ X_9[k] $ as an 9-pt DFT of $ x[n] $, $ H_9[k] $ as an 9-pt DFT of $ h[n] $, and then $ y_9[n] $ as the 9-pt inverse DFT of $ Y_9[k] = X_9[k]H_9[k] $.

Express the result $ y_9[n] $ as a weighted sum of finite-length sinewaves similar to how $ x[n] $ is written above.


Q2. Consider the discrete-time signal

$ x[n]=6\delta[n]+5 \delta[n-1]+4 \delta[n-2]+3 \delta[n-3]+2 \delta[n-4]+\delta[n-5]. $

a) Obtain the 6-point DFT X[k] of x[n].

b) Obtain the signal y[n] whose DFT is $ W_6^{-2k} X[k] $.

c) Compute six-point circular convolution between x[n] and the signal

$ h[n]=\delta[n]+\delta[n-1]+\delta[n-2]. $

Q3.


Q4.


Q5.


Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010