Line 158: Line 158:
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| <math> \frac{1}{s^2-a^2} \ </math>
 
| <math> \frac{1}{s^2-a^2} \ </math>
| <math> \left(\frac{\operatorname{sh}\,{at}\}{a}\right)\ </math>
+
| <math> \left(\frac{{sh}\ {at}}{a}\right)\ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| <math> \frac{s}{s^2-a^2}\ </math>
 
| <math> \frac{s}{s^2-a^2}\ </math>
| <math> \ch{at}\ </math>
+
| <math> {ch}\ {at}\ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" |  
 
| align="right" style="padding-right: 1em;" |  
 
| <math> \frac1{(s-b)^2-a^2}\ </math>
 
| <math> \frac1{(s-b)^2-a^2}\ </math>
| <math> \frac{e^{bt}\sh{at}}a\ </math>
+
| <math> \frac{e^{bt}{sh}\ {at}}a\ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | please continue
 
| align="right" style="padding-right: 1em;" | please continue

Revision as of 16:41, 8 November 2010

IT SEEMS LIKE THE VARIABLES s AND t WERE INTERCHANGED BELOW.

Laplace Transform Pairs and Properties
Definition
Laplace Transform $ F(s)=\int_{-\infty}^\infty f(t) e^{-st}dt, \ s\in {\mathbb C} \ $
Inverse Laplace Transform add formula here
Properties of the Laplace Transform
function $ f(s) \ $ Laplace transform $ F(t) \ $ ROC $ R $
$ af_1(s)+bf_2(s) \ $ $ aF_1(t)+bF_2(t) \ $
$ f\left( \frac{s}{a} \right) $ $ aF(at) \ $
$ f(s-a) \ $ $ e^{at}F(t) \ $
$ e^{-as}f(s) \ $ $ u(t-a) = \begin{cases} F(t-a) & t>a \\ 0 & t<a \end{cases} $
$ sf(s)-F(0) \ $ $ F'(t) \ $
$ s^2f(s)-sF(0)-F'(0) \ $ $ F''(t) \ $
$ s^{n}f(s)-\sum_{k=1}^ns^{n-k}F^{(k)}(0) \ $ $ F^{(n)}(t) \ $
$ f'(s) \ $ $ -tF(t) \ $
$ f''(s) \ $ $ t^2F(t) \ $
$ f^{(n)}(s) \ $ $ (-1)^{(ntn)}F(t) \ $
$ \frac{f(s)}s \ $ $ \int_{0}^{t} F(u) du \ $
$ \frac{f(s)}{s^n} \ $ $ \int_{0}^{t}...\int_{0}^{t}F(u)du^n = \int_{0}^{t}\frac{{(t-u)}^{n-1}}{(n-1)!} F(u)du \ $
$ f(s)g(s) \ $ $ \int_{0}^{t}F(u)G(t-u)du \ $
$ \int_{s}^{\infty}f(u)du \ $ $ \frac{F(t)}t \ $
$ \frac1{1-e^{-sT}}\int_{0}^{T}e^{-su}F(u)du \ $ $ F(t)=F(t+T) \ $
$ \frac{f(\sqrt{s})}s \ $ $ \frac{1}{\sqrt{{\pi}t}}\int_{0}^{\infty}e^{-\frac{u^2}4t}F(u)du $
$ \frac1sf\left(\frac1s\right) \ $ $ \int_{0}^{\infty}J_0(2\sqrt{ut})F(u)du \ $
$ \frac1{g^{n+1}}f\left(\frac1s\right) \ $ $ t^{\frac{n}2}\int_{0}^{\infty}u^{-\frac{n}2}J_n(2\sqrt{ut})F(u)du \ $
$ \frac{f(s+\frac1s)}{s^2+1} \ $ $ \int_{0}^{t}J_0(2\sqrt{u(t-u)})F(u)du \ $
$ \frac1{2\sqrt\pi}\int_{0}^{\infty}u^{-\frac32}e^{-\frac{s^2}{4u}}f(u)du \ $ $ F(t^2) \ $
$ \frac{f(\ln s)}{s\ln s} \ $ $ \int_{0}^{\infty}\frac{t^uF(u)}{\Gamma(u+1)}du \ $
$ \frac{P(s)}{Q(s)} \ $ $ \sum_{k=1}^N \frac{P(\alpha_k)}{Q'(\alpha_k)}e^{\alpha_kt} \ $
$ \frac1s \ $ $ 1 \ $
$ \frac1{s^2} \ $ $ t(s) \ $
$ \frac1{s^n}, \ n=1,2,3,... \ $ $ \frac{t^{n-1}}{(n-1)!}, \ 0!=1 \ $
$ \frac1{s^n}, \ n>0 \ $ $ \frac{t^{n-1}}{\Gamma(n)} \ $
$ \frac1{s-a}\ $ $ e^{at}\ $
$ \frac1{(s-a)^n}, \ n=1,2,3,...\ $ $ \frac{t^{n-1}e^{at}}{(n-1)!}, \ 0!=1\ $
$ \frac1{(s-a)^n}, \ n>0\ $ $ \frac{t^{n-1}e^{at}}{\Gamma(n)}\ $
$ \frac1{s^2+a^2}\ $ $ \frac{\sin {at}}{a} \ $
$ \frac{s}{s^2+a^2} \ $ $ \cos {at} \ $
$ \frac1{(s-b)^2+a^2}\ $ $ \frac{e^{bt}\sin{at}}{a} \ $
$ \frac{s-b}{(s-b)^2+a^2}\ $ $ e^{bt}\cos{at}\ $
$ \frac{1}{s^2-a^2} \ $ $ \left(\frac{{sh}\ {at}}{a}\right)\ $
$ \frac{s}{s^2-a^2}\ $ $ {ch}\ {at}\ $
$ \frac1{(s-b)^2-a^2}\ $ $ \frac{e^{bt}{sh}\ {at}}a\ $
please continue place formula here
please continue place formula here
Laplace Transform Pairs
notes Signal Laplace Transform ROC
unit impulse/Dirac delta $ \,\!\delta(t) $ 1 $ \text{All}\, s \in {\mathbb C} $
unit step function $ \,\! u(t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,\! -u(-t) $ $ \frac{1}{s} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \frac{t^{n-1}}{(n-1)!}u(t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ -\frac{t^{n-1}}{(n-1)!}u(-t) $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < 0 $
$ \,\!e^{-\alpha t}u(t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \,\! -e^{-\alpha t}u(-t) $ $ \frac{1}{s+\alpha} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ -\frac{t^{n-1}}{(n-1)!}e^{-\alpha t}u(-t) $ $ \frac{1}{(s+\alpha )^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace < -\alpha $
$ \,\!\delta (t - T) $ $ \,\! e^{-sT} $ $ \text{All}\,\, s\in {\mathbb C} $
$ \,\cos( \omega_0 t)u(t) $ $ \frac{s}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \, \sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{s^2+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $
$ \,e^{-\alpha t}\cos( \omega_0 t) u(t) $ $ \frac{s+\alpha}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ \, e^{-\alpha t}\sin( \omega_0 t)u(t) $ $ \frac{\omega_0}{(s+\alpha)^{2}+\omega_0^{2}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > -\alpha $
$ u_n(t) = \frac{d^{n}\delta (t)}{dt^{n}} $ $ \,\!s^{n} $ $ All\,\, s $
$ u_{-n}(t) = \underbrace{u(t) *\dots * u(t)}_{n\,\,times} $ $ \frac{1}{s^{n}} $ $ \mathcal{R} \mathfrak{e} \lbrace s \rbrace > 0 $

Back to Collective Table

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010