Line 16: Line 16:
  
 
<math>=\frac{1}{2L}(\int_{-L}^L f(x)(\cos(nx)\,dx -
 
<math>=\frac{1}{2L}(\int_{-L}^L f(x)(\cos(nx)\,dx -
i\int_{-L}^L f(x)\sin(nx))\,dx)=</math>
+
i\int_{-L}^L f(x)\sin(nx)\,dx)=</math>
  
 
<math>=\frac{1}{2}(a_n-ib_n).</math>
 
<math>=\frac{1}{2}(a_n-ib_n).</math>

Revision as of 07:05, 5 November 2010

Homework 11 collaboration area

Question: I'm having trouble getting HWK 11, Page 499, Problem 3 started.

Answer: You will need to use Euler's identity

$ e^{i\theta}=\cos\theta+i\sin\theta $

and separate the definitions of the complex coefficients into real and imaginary parts. For example,

$ c_n=\frac{1}{2L}\int_{-L}^L f(x)e^{-inx}\,dx= $

$ =\frac{1}{2L}\int_{-L}^L f(x)(\cos(-nx)+i\sin(-nx))\,dx= $

$ =\frac{1}{2L}\int_{-L}^L f(x)(\cos(nx)-i\sin(nx))\,dx= $

$ =\frac{1}{2L}(\int_{-L}^L f(x)(\cos(nx)\,dx - i\int_{-L}^L f(x)\sin(nx)\,dx)= $

$ =\frac{1}{2}(a_n-ib_n). $

Do the same thing for $ c_{-n} $ and combine.

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett