(New page: == Homework 11 collaboration area == Back to the MA 527 start page To Rhea Course List Category:MA5272010Bell)
 
Line 1: Line 1:
 
== Homework 11 collaboration area ==
 
== Homework 11 collaboration area ==
  
 +
Question:  I'm having trouble getting HWK 11, Page 499, Problem 3 started.
 +
 +
Answer:  You will need to use Euler's identity
 +
 +
<math>e^{i\theta}=\cos\theta+i\sin\theta</math>
 +
 +
and separate the definitions of the complex coefficients into real and imaginary parts.  For example,
 +
 +
<math>c_n=\frac{1}{2L}\int_{-L}^L f(x)e^{-inx}\,dx=</math>
 +
 +
<math>=\frac{1}{2L}\int_{-L}^L f(x)(\cos(-nx)+i\sin(-nx))\,dx=</math>
 +
 +
<math>=\frac{1}{2L}\int_{-L}^L f(x)(\cos(nx)-i\sin(nx))\,dx=</math>
 +
 +
<math>=\frac{1}{2}(a_n-ib_n).</math>
 +
 +
Do the same thing for <math>c_{-n}</math> and combine.
  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  

Revision as of 06:44, 5 November 2010

Homework 11 collaboration area

Question: I'm having trouble getting HWK 11, Page 499, Problem 3 started.

Answer: You will need to use Euler's identity

$ e^{i\theta}=\cos\theta+i\sin\theta $

and separate the definitions of the complex coefficients into real and imaginary parts. For example,

$ c_n=\frac{1}{2L}\int_{-L}^L f(x)e^{-inx}\,dx= $

$ =\frac{1}{2L}\int_{-L}^L f(x)(\cos(-nx)+i\sin(-nx))\,dx= $

$ =\frac{1}{2L}\int_{-L}^L f(x)(\cos(nx)-i\sin(nx))\,dx= $

$ =\frac{1}{2}(a_n-ib_n). $

Do the same thing for $ c_{-n} $ and combine.

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett