(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q1 of Week 11 Quiz Pool == ---- The transfer function of the first and second systems are :<math>H_1(z)=1-z^{-1}\,\!</math> :<ma...)
 
 
Line 10: Line 10:
  
 
Then, the transfer function of the combined system, <math>(T_1+T_2)[x[n]]</math> is
 
Then, the transfer function of the combined system, <math>(T_1+T_2)[x[n]]</math> is
:<math>\begin{align}H(z)=H_1(z)+H_2(z)&=1+z^{-1}+\frac{1}{1-\frac{1}{2}z^{-1}} \\ &=\frac{2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}{1-\frac{1}{2}z^{-1}}\end{align}</math>
+
:<math>\begin{align}H(z)=H_1(z)+H_2(z)&=1-z^{-1}+\frac{1}{1-\frac{1}{2}z^{-1}} \\ &=\frac{2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}{1-\frac{1}{2}z^{-1}}\end{align}</math>
  
 
Thus, the impulse response <math>h[n]</math> of the combined system is (if we assume 'casual'),
 
Thus, the impulse response <math>h[n]</math> of the combined system is (if we assume 'casual'),

Latest revision as of 07:52, 4 November 2010



Solution to Q1 of Week 11 Quiz Pool


The transfer function of the first and second systems are

$ H_1(z)=1-z^{-1}\,\! $
$ H_2(z)=\frac{1}{1-\frac{1}{2}z^{-1}} $

Then, the transfer function of the combined system, $ (T_1+T_2)[x[n]] $ is

$ \begin{align}H(z)=H_1(z)+H_2(z)&=1-z^{-1}+\frac{1}{1-\frac{1}{2}z^{-1}} \\ &=\frac{2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}{1-\frac{1}{2}z^{-1}}\end{align} $

Thus, the impulse response $ h[n] $ of the combined system is (if we assume 'casual'),

$ h[n]=\delta[n]-\delta[n-1]+(0.5)^n u[n]\,\! $

And the difference equation for the combined system is

$ \begin{align}&H(z)=\frac{Y(z)}{X(z)}=\frac{2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}}{1-\frac{1}{2}z^{-1}} \\ &\Rightarrow Y(z)(1-\frac{1}{2}z^{-1})=X(z)(2-\frac{3}{2}z^{-1}+\frac{1}{2}z^{-2}) \\ &\Rightarrow y[n]-\frac{1}{2}y[n-1]=2x[n]-\frac{3}{2}x[n-1]+\frac{1}{2}x[n-2] \end{align} $



Back to Lab Week 11 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang