Line 13: Line 13:
 
<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X[k]e^{j \frac{2{\pi}}{N}kn}}, for \mbox{  }n = 0, 1, 2, 3, ..., N-1</math>
 
<math>x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X[k]e^{j \frac{2{\pi}}{N}kn}}, for \mbox{  }n = 0, 1, 2, 3, ..., N-1</math>
  
X[k] is defined for <math>0 <= k <= N - 1</math>  
+
X[k] is defined for <math>0 <= k <= N - 1</math> and periodic with period N
 +
X[n] is defined for <math>0 <= n <= N - 1</math> and also periodic with period N
  
 
----
 
----

Revision as of 14:09, 28 October 2010

Discrete Fourier Transform (DFT)


Definition of DFT

DFT

$ X[k] = \sum_{n=0}^{N-1}{x[n]e^{-j \frac{2{\pi}}{N}kn}}, for \mbox{ }k = 0, 1, 2, 3, ..., N-1 $

IDFT

$ x[n] = \frac{1}{N}\sum_{k=0}^{N-1}{X[k]e^{j \frac{2{\pi}}{N}kn}}, for \mbox{ }n = 0, 1, 2, 3, ..., N-1 $

X[k] is defined for $ 0 <= k <= N - 1 $ and periodic with period N X[n] is defined for $ 0 <= n <= N - 1 $ and also periodic with period N


Properties of DFT

Linearity

$ ax_1[n] + bx_2[n] \longleftrightarrow aX_1[k] + bX_2[k] $

for any a, b complex constant and all $ x_1[n] $ and $ x_2[n] $ with the same length

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010