(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q1 of Week 10 Quiz Pool == ---- a. The difference equation for this system is :<math>\begin{align} & Y(z) = az^{-1}Y(z)+X(z)-z^{...)
 
 
Line 24: Line 24:
  
 
----
 
----
 +
Credit: Prof. Charles Bouman
  
 
Back to [[ECE438_Week10_Quiz|Lab Week 10 Quiz Pool]]
 
Back to [[ECE438_Week10_Quiz|Lab Week 10 Quiz Pool]]

Latest revision as of 18:00, 26 October 2010



Solution to Q1 of Week 10 Quiz Pool


a. The difference equation for this system is

$ \begin{align} & Y(z) = az^{-1}Y(z)+X(z)-z^{-1}X(z) \\ & H(z) = \frac{Y(z)}{X(z)} = \frac{1-z^{-1}}{1-az^{-1}} \\ \end{align}\,\! $
poles at $ z=a $ and zeros at $ z=1 $.

b. ROC $ |z|>a $

$ H(z)=\frac{1}{1-az^{-1}}-\frac{z^{-1}}{1-az^{-1}} $
$ \Rightarrow h[n]=a^{n}u[n]-a^{n-1}u[n-1] $
The system is stable if ROC contains the unit circle ($ |z|=1 $), therefore $ |a|<1 $.

c. ROC $ |z|<a $

$ H(z)=\frac{1}{1-az^{-1}}-\frac{z^{-1}}{1-az^{-1}} $
$ \Rightarrow h[n]=-a^{n}u[-n-1]+a^{n-1}u[-(n-1)-1] $
$ \Rightarrow h[n]=-a^{n}u[-n-1]+a^{n-1}u[-n] $
The system is stable if ROC contains the unit circle ($ |z|=1 $), therefore $ |a|>1 $.

Credit: Prof. Charles Bouman

Back to Lab Week 10 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn