Line 26: | Line 26: | ||
|- | |- | ||
| third order | | third order | ||
− | | <math>\frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} </math> | + | | <math>\frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} </math> [[User:Mboutinformulas|credit]] |
|- | |- | ||
| n-th order | | n-th order |
Revision as of 07:50, 26 October 2010
Table of Derivatives | |
---|---|
General Rules | |
Derivative of a constant | $ \frac{d}{dx}\left( c \right) = 0, \ \text{ for any constant }c $ |
$ \frac{d}{dx}\left( c x \right) = c, \ \text{ for any constant }c $ | |
Linearity | $ \frac{d}{dx}\left( c_1 u_1+c_2 u_2 \right) = c_1 \frac{d}{dx}\left( u_1 \right)+c_2 \frac{d}{dx}\left( u_2 \right), \ \text{ for any constants }c_1, c_2 $ |
Please continue | write a rule here |
Leibnitz Rule for Successive Derivatives of a Product | |
first order | $ \frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} $ |
second order | $ \frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+ v \frac{d^2u }{dx^2} $ |
third order | $ \frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} $ credit |
n-th order | $ \frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} + \left( \begin{array}{cc}n \\ 1 \end{array}\right) \frac{du }{dx}\frac{d^{n-1}v }{dx^{n-1}} + \left( \begin{array}{cc}n \\ 2 \end{array}\right) \frac{d^2u}{dx^2}\frac{d^{n-2}v }{dx^{n-2}}+ \ldots + v \frac{d^n u }{dx^n} $ |
Derivatives of trigonometric functions | ||
---|---|---|
sine | sin u | $ \cos u \frac{du}{dx} $ |
add function here | derivative here | |
Derivatives of exponential and logarithm functions | ||
exponential | eu | $ e^u \frac{du}{dx} $ |
add function here | derivative here | |
Derivatives of hyperbolic functions | ||
hyperbolic sine | $ \text{sh } u $ | $ \text{ch } u \frac{du}{dx} $ |
add function here | derivative here |