Line 18: Line 18:
 
|  Please continue
 
|  Please continue
 
| write a rule here
 
| write a rule here
 +
|-
 +
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Leibnitz Rule for Successive Derivatives of a Product
 +
|-
 +
| first order
 +
| <math>\frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} </math>
 +
|-
 +
| second order
 +
|  <math>\frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+  v \frac{d^2u }{dx^2} </math>
 +
|-
 +
| third order
 +
| <math>\frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+  v \frac{d^3u }{dx^3} </math>
 +
|-
 +
| n-th order
 +
|  <math>\frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} +  </math>
 
|}
 
|}
 
{|
 
{|
Line 43: Line 57:
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="3" | Derivatives of hyperbolic functions
 
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="3" | Derivatives of hyperbolic functions
 
|-
 
|-
| exponential
+
| hyperbolic sine
| <span class="texhtml">''e''<sup>''u''</sup></span>  
+
| <math>\text{sh } u</math>
| <math>e^u \frac{du}{dx}</math>
+
| <math>\text{ch } u \frac{du}{dx}</math>
 
|-
 
|-
 
|   
 
|   

Revision as of 07:22, 26 October 2010

Table of Derivatives

Laplace Transform Pairs and Properties
General Rules
Derivative of a constant $ \frac{d}{dx}\left( c \right) = 0, \ \text{ for any constant }c $
$ \frac{d}{dx}\left( c x \right) = c, \ \text{ for any constant }c $
Linearity $ \frac{d}{dx}\left( c_1 u_1+c_2 u_2 \right) = c_1 \frac{d}{dx}\left( u_1 \right)+c_2 \frac{d}{dx}\left( u_2 \right), \ \text{ for any constants }c_1, c_2 $
Please continue write a rule here
Leibnitz Rule for Successive Derivatives of a Product
first order $ \frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} $
second order $ \frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+ v \frac{d^2u }{dx^2} $
third order $ \frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} $
n-th order $ \frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} + $
Derivatives of trigonometric functions
sine sin u $ \cos u \frac{du}{dx} $
add function here derivative here
Derivatives of exponential and logarithm functions
exponential eu $ e^u \frac{du}{dx} $
add function here derivative here
Derivatives of hyperbolic functions
hyperbolic sine $ \text{sh } u $ $ \text{ch } u \frac{du}{dx} $
add function here derivative here


Back to Collective Table of Formulas

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett