Line 18: | Line 18: | ||
| Please continue | | Please continue | ||
| write a rule here | | write a rule here | ||
+ | |- | ||
+ | ! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="2" | Leibnitz Rule for Successive Derivatives of a Product | ||
+ | |- | ||
+ | | first order | ||
+ | | <math>\frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} </math> | ||
+ | |- | ||
+ | | second order | ||
+ | | <math>\frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+ v \frac{d^2u }{dx^2} </math> | ||
+ | |- | ||
+ | | third order | ||
+ | | <math>\frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} </math> | ||
+ | |- | ||
+ | | n-th order | ||
+ | | <math>\frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} + </math> | ||
|} | |} | ||
{| | {| | ||
Line 43: | Line 57: | ||
! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="3" | Derivatives of hyperbolic functions | ! style="background-color: rgb(238, 238, 238); background-image: none; background-repeat: repeat; background-attachment: scroll; background-position: 0% 0%; -moz-background-size: auto auto; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial; font-size: 110%;" colspan="3" | Derivatives of hyperbolic functions | ||
|- | |- | ||
− | | | + | | hyperbolic sine |
− | | < | + | | <math>\text{sh } u</math> |
− | | <math> | + | | <math>\text{ch } u \frac{du}{dx}</math> |
|- | |- | ||
| | | |
Revision as of 07:22, 26 October 2010
Table of Derivatives
Laplace Transform Pairs and Properties | |
---|---|
General Rules | |
Derivative of a constant | $ \frac{d}{dx}\left( c \right) = 0, \ \text{ for any constant }c $ |
$ \frac{d}{dx}\left( c x \right) = c, \ \text{ for any constant }c $ | |
Linearity | $ \frac{d}{dx}\left( c_1 u_1+c_2 u_2 \right) = c_1 \frac{d}{dx}\left( u_1 \right)+c_2 \frac{d}{dx}\left( u_2 \right), \ \text{ for any constants }c_1, c_2 $ |
Please continue | write a rule here |
Leibnitz Rule for Successive Derivatives of a Product | |
first order | $ \frac{d}{dx}\left( u v \right)= u \frac{dv }{dx} + v \frac{du }{dx} $ |
second order | $ \frac{d^2}{dx^2}\left( u v \right)= u \frac{d^2v }{dx^2} + 2\frac{du }{dx}\frac{dv }{dx}+ v \frac{d^2u }{dx^2} $ |
third order | $ \frac{d^3}{dx^3}\left( u v \right)= u \frac{d^3v }{dx^3} + 3 \frac{du }{dx}\frac{d^2v }{dx^2}+ 3 \frac{du^2 }{dx^2}\frac{d v }{dx}+ v \frac{d^3u }{dx^3} $ |
n-th order | $ \frac{d^n}{dx^n}\left( u v \right)= u \frac{d^n v }{dx^n} + $ |
Derivatives of trigonometric functions | ||
---|---|---|
sine | sin u | $ \cos u \frac{du}{dx} $ |
add function here | derivative here | |
Derivatives of exponential and logarithm functions | ||
exponential | eu | $ e^u \frac{du}{dx} $ |
add function here | derivative here | |
Derivatives of hyperbolic functions | ||
hyperbolic sine | $ \text{sh } u $ | $ \text{ch } u \frac{du}{dx} $ |
add function here | derivative here |