Line 75: Line 75:
  
 
Answer: I cannot figure out how to solve 17 yet, but for 7, you can get down to
 
Answer: I cannot figure out how to solve 17 yet, but for 7, you can get down to
 +
something like
  
<math>\int_a^b  Sin(nx) *Sin(mx) \, \mathrm{d}x</math>.
+
<math>\int_a^b  Sin(nx) *Sin(mx) \, \mathrm{d}x.</math>
 
+
  
 +
(And that integral is calculated at the bottom of page 205.)
  
 
p. 209, #17
 
p. 209, #17

Revision as of 07:19, 24 October 2010

Homework 9 Collaboration Area

Here are some

Hints from Bell about Legendre Polynomials.

Question Page 597, Problem 5:

What do we do with the x in the first term of this problem?

Answer: When you do a Laplace transform wrt t, the x floats along like when you do d/dt(x*t). Then you can use formula 4 in section 1.5 to solve the 1st order ODE.

Question Page 209 Problem 7:

Where does the $ \pi $ come from in this solution?

Answer: When you do the positive lambda case, you get A = 0 and let B = 1 => Sin(5*mu) = 0. If mu = m*pi/5, this equation is true. I let B=1 because we cannot have both A and B = 0.

Question: Page 209, Problem 17: For the given equation, shouldn't p=1, q=16, r=1? These values differ from the textbook's values.

Answer: If that were the case, then the equation would be

[py']' + (q+ lambda r) y =

[1 y']' + (16 + lambda) y =

y" + (16 + lambda) y = 0

and it ain't. You need to use problem 6 in the same section to get p,q, and r.

Question: Why isn't q=pg=16*exp(8x)?

Answer: Here is the idea of problem 6. We have the equation

$ y'' + 8 y' + (\lambda + 16)y=0. $

Multiply that equation by p(x). You get

$ py'' + 8p y' + (\lambda p+ 16p)y=0. $

If this were in Sturm-Liouville form, it would look like

$ [py']'+ (q + \lambda r) y = $

$ py'' + p'y' + (q+ \lambda r) y = 0. $

By comparing those two, we see that we need

$ p'=8p $

and q=16p and r=p. Solving the ODE for p yields

$ p(x)=e^{8x}. $

(We can take the arbitrary constant in the solution to be a convenient value because we just want one p(x) that has this property.)

Finally, we get

$ p(x)=e^{8x},\quad q(x)=16e^{8x},\quad\text{and }r(x)=e^{8x}. $

Hmmm. I see what you mean. I think the answer in the back of the book is wrong.--Steve Bell 12:07, 23 October 2010 (UTC)

p. 216, #s 1 and 3:

I am using the hints given, but I'm still not sure I'm doing this correctly. For example, for #1, I've calculated c4 as c4 = [((2*4)+1)/2] * integral from -1 to 1 of (7x^4-6x^2)(P_4(x)) dx, where P_4= (1/8)(35x^4-30x^2+3), and then I would do something similar for C3, C2, C1, and C0. But if I find C4 this way, I'll get an answer where there's an x^9 term, and I don't see how to get an answer in terms for P_4 and P_1, like there is in the back of the book.

p. 209 #7 & #17:

To verify orthogonality, do you just use Theorem , or do you have to do the integral?

Answer: The theorem says the eigenfunctions are orthogonal. However, to VERIFY that, you'll have to compute the integrals.

Answer: I cannot figure out how to solve 17 yet, but for 7, you can get down to something like

$ \int_a^b Sin(nx) *Sin(mx) \, \mathrm{d}x. $

(And that integral is calculated at the bottom of page 205.)

p. 209, #17

Answer:

You can solve for lambda in a way similar to the way Prof. Bell did it at the beginning of class on 10/20/10. From the original problem you get: r^2+8r=16 = -lamda. Here r = sqrt(-lambda)-4. As normal, the lambda >0 case gives you non-zero solutions. Since our root is complex of the form -4 plus/minus i*sqrt(lambda), where mu = sqrt(lambda). We can solve for lambda like in 7 by using the general form of:

y = exp(-4*x)*(A*cos(mu*x)+B*sin(mu*x)). Plug in boundary conditions and Ta-Da. Oh and I conveniently pulled 'i' into B so I wouldn't have to worry about it. Seemed to turn out ok...


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal