(Properties)
Line 21: Line 21:
  
 
== Properties ==
 
== Properties ==
 +
'''Linearity''':
 +
 +
<math>CTFT[x(t)] = X(\omega)</math>
 +
 +
Then <math>CTFT[\alpha x1(t) + \beta x2(t)] = \alpha X1(\omega) + \beta X2(\omega)</math>
 +
 +
'''Time Reversal''':
 +
 +
<math>CTFT[x(t)] = X(\omega)</math>
 +
 +
Then <math>CTFT[x(-t)] = X(-\omega)</math>
 +
 +
'''Time/Frequency Shift''':
 +
 +
Time: <math>CTFT[x(t-T)] = X(\omega)e^{-j \omega T}</math>
 +
 +
Frequency: <math>CTFT[x(t)e^{j W t} = X(\omega - W)</math>
 +
 +
'''Time Scaling''':
 +
 +
<math>CTFT[x(\alpha t)] = \frac{1}{|\alpha |} = X(\frac{\omega}{\alpha})

Revision as of 06:11, 23 October 2010

A work in progress.

The Continuous Time Fourier Transform (CTFT)

CTFT:

$ X(\omega) = \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt $

Inverse CTFT:

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \! X(\omega)e^{j \omega t} dw $

Example:

Let $ x(t) = \delta (t) $

$ \begin{align} X(\omega) &= \int_{-\infty}^{\infty} \! x(t)e^{-j \omega t} dt \\ &= \int_{-\infty}^{\infty} \! \delta (t)e^{-j \omega t} dt \\ &= 1\end{align} $

Therefore, CTFT of $ \delta (t) = 1 $

Properties

Linearity:

$ CTFT[x(t)] = X(\omega) $

Then $ CTFT[\alpha x1(t) + \beta x2(t)] = \alpha X1(\omega) + \beta X2(\omega) $

Time Reversal:

$ CTFT[x(t)] = X(\omega) $

Then $ CTFT[x(-t)] = X(-\omega) $

Time/Frequency Shift:

Time: $ CTFT[x(t-T)] = X(\omega)e^{-j \omega T} $

Frequency: $ CTFT[x(t)e^{j W t} = X(\omega - W) $

Time Scaling:

$ CTFT[x(\alpha t)] = \frac{1}{|\alpha |} = X(\frac{\omega}{\alpha}) $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal