Line 1: Line 1:
 
{|
 
{|
! colspan="2" style="background:  #e4bc7e; font-size: 110%;" |  
+
! colspan="2" style="background:  #e4bc7e; font-size: 120%;" |  
 
|-
 
|-
 
! colspan="2" style="background: #eee;" | Property of Probability Functions
 
! colspan="2" style="background: #eee;" | Property of Probability Functions
Line 13: Line 13:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Event A occurs given that event B has occurred || <math>\,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\,</math>
 
| align="right" style="padding-right: 1em;" | Event A occurs given that event B has occurred || <math>\,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\,</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Total Probability Law || <math>\,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\,</math>
 +
<math> \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }.</math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Bayes Theorem || <math>\,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }.</math>
 
|}
 
|}
 
----
 
----
 
[[Collective_Table_of_Formulas|Back to Collective Table]]  
 
[[Collective_Table_of_Formulas|Back to Collective Table]]  
 
[[Category:Formulas]]
 
[[Category:Formulas]]

Revision as of 08:35, 22 October 2010

Property of Probability Functions
The complement of an event A (i.e. the event A not occurring) $ \,P(A^c) = 1 - P(A)\, $
The intersection of two independent events A and B $ \,P(A \mbox{ and }B) = P(A \cap B) = P(A) P(B)\, $
The union of two events A and B (i.e. either A or B occurring) $ \,P(A \mbox{ or } B) = P(A) + P(B) - P(A \mbox{ and } B)\, $
The union of two mutually exclusive events A and B $ \,P(A \mbox{ or } B) = P(A \cup B)= P(A) + P(B)\, $
Event A occurs given that event B has occurred $ \,P(A \mid B) = \frac{P(A \cap B)}{P(B)}\, $
Total Probability Law $ \,P(B) = P(B|A_1)P(A_1) + \dots + P(B|A_n)P(A_n)\, $
$  \mbox{ where } \{A_1,\dots,A_n\} \mbox{ is a partition of sample space } S, B \mbox{ is an event }. $
Bayes Theorem $ \,P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{n}P(B|A_i)P(A_i)},\ \{A_i\} \mbox{ and } B \mbox{ are as above }. $

Back to Collective Table

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin