Line 105: | Line 105: | ||
|- | |- | ||
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Triple-Angle Formulas | ! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Triple-Angle Formulas | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | triple-angle for sine | ||
+ | |<math>\begin{align}\sin 3\theta & = 3 \cos^2\theta \sin\theta - \sin^3\theta \\ | ||
+ | & = 3\sin\theta - 4\sin^3\theta \end{align}</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | triple-angle for cosine | ||
+ | |<math>\begin{align}\cos 3\theta & = \cos^3\theta - 3 \sin^2 \theta\cos \theta \\ | ||
+ | & = 4 \cos^3\theta - 3 \cos\theta\end{align}</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | triple-angle for tangent | ||
+ | |<math>\tan 3\theta = \frac{3 \tan\theta - \tan^3\theta}{1 - 3 \tan^2\theta}</math> | ||
|- | |- | ||
| align="right" style="padding-right: 1em;" | please continue | | align="right" style="padding-right: 1em;" | please continue | ||
Line 119: | Line 130: | ||
| align="right" style="padding-right: 1em;" | Tangent | | align="right" style="padding-right: 1em;" | Tangent | ||
|<math> \tan \left(\theta\pm \alpha \right)= \frac {\tan \theta \pm \tan \alpha}{1 \mp \tan \theta \tan \alpha}</math> | |<math> \tan \left(\theta\pm \alpha \right)= \frac {\tan \theta \pm \tan \alpha}{1 \mp \tan \theta \tan \alpha}</math> | ||
+ | |- | ||
+ | | align="right" style="padding-right: 1em;" | please continue | ||
+ | | place formula here | ||
+ | |- | ||
|} | |} | ||
Revision as of 07:58, 22 October 2010
Trigonometric Identities | |
---|---|
Basic Definitions | |
Definition of tangent | $ \tan \theta = \frac{\sin \theta}{\cos\theta} $ |
Definition of cotangent | $ \cot \theta = \frac{\cos \theta}{\sin\theta} \ $ credit |
Definition of secant | $ \sec \theta = \frac{1}{\cos \theta} \ $ |
Definition of cosecant | $ \csc \theta = \frac{1}{\sin \theta} \ $ |
Definition of versed sine (versine) | $ \text{ver } \theta = 1- \cos \theta \ $ |
Definition of versed cosine (versine) | $ \text{vercosine } \theta = 1+ \cos \theta \ $ |
please continue | place formula here |
Pythagorean identity and other related identities | |
Pythagorean identity | $ \cos^2 \theta+\sin^2 \theta =1 \ $ |
$ \sin^2 \theta = 1-\cos^2 \theta \ $ | |
$ \cos^2 \theta = 1-\sin^2 \theta \ $ | |
$ \sec^2 \theta = 1+\tan^2 \theta \ $ | |
$ \csc^2 \theta = 1+\cot^2 \theta \ $ | |
please continue | place formula here |
Half-Angle Formulas | |
Half-angle for sine | $ \sin \frac{\theta}{2} = \pm \sqrt{ \frac{1-\cos \theta}{2} } \ $ |
Half-angle for cosine | $ \cos \frac{\theta}{2} = \pm \sqrt{ \frac{1+\cos \theta}{2} } \ $ |
Half-angle for tangent | $ \tan \frac{\theta}{2} = \csc \theta - \cot \theta \ $ |
Half-angle for tangent | $ \tan \frac{\theta}{2} =\pm\sqrt{\frac{1-\cos \theta}{ 1+\cos \theta }} \ $ |
Half-angle for tangent | $ \tan \frac{\theta}{2} =\frac{\sin \theta}{ 1+\cos \theta } \ $ |
Half-angle for tangent | $ \tan \frac{\theta}{2} =\frac{1-\cos \theta}{ \sin \theta } \ $ |
Half-angle for cotangent | $ \cot \frac{\theta}{2} = \csc \theta + \cot \theta $ |
Half-angle for cotangent | $ \cot \frac{\theta}{2} = \frac{1 + \cos \theta}{\sin \theta} $ |
Half-angle for cotangent | $ \cot \frac{\theta}{2} = \pm \sqrt{1 + \cos \theta \over 1 - \cos \theta} $ |
Half-angle for cotangent | $ \cot \frac{\theta}{2} = \frac{\sin \theta}{1 - \cos \theta} $ |
please continue | place formula here |
Double-Angle Formulas | |
double-angle for sine | $ \sin 2 \theta = 2 \sin \theta \cos \theta \ $ credit |
double-angle for sine | $ \sin 2 \theta = \frac{ 2 \tan \theta}{1+ \tan^2 \theta } \ $ |
double-angle for cosine | $ \cos 2 \theta =\cos^2 \theta - \sin^2 \theta \ $ |
double-angle for cosine | $ \cos 2 \theta =2 \cos^2 \theta - 1 \ $ |
double-angle for cosine | $ \cos 2 \theta =1- 2 \sin^2 \theta \ $ |
double-angle for cosine | $ \cos 2 \theta =\frac{1- \tan^2 \theta}{ 1+\tan^2 \theta } \ $ |
please continue | place formula here |
Triple-Angle Formulas | |
triple-angle for sine | $ \begin{align}\sin 3\theta & = 3 \cos^2\theta \sin\theta - \sin^3\theta \\ & = 3\sin\theta - 4\sin^3\theta \end{align} $ |
triple-angle for cosine | $ \begin{align}\cos 3\theta & = \cos^3\theta - 3 \sin^2 \theta\cos \theta \\ & = 4 \cos^3\theta - 3 \cos\theta\end{align} $ |
triple-angle for tangent | $ \tan 3\theta = \frac{3 \tan\theta - \tan^3\theta}{1 - 3 \tan^2\theta} $ |
please continue | place formula here |
Angle sum and difference identities | |
Sine | $ \sin \left( \theta\pm \alpha \right)=\sin \theta \cos \alpha \pm \cos \theta \sin \alpha $ |
Cosine | $ \cos \left(\theta\pm \alpha \right)= \cos \theta \cos \alpha \mp \sin \theta \sin \alpha $ |
Tangent | $ \tan \left(\theta\pm \alpha \right)= \frac {\tan \theta \pm \tan \alpha}{1 \mp \tan \theta \tan \alpha} $ |
please continue | place formula here |