Line 9: Line 9:
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Definition of cotangent
 
| align="right" style="padding-right: 1em;" | Definition of cotangent
| <math>  \cot \theta = \frac{\cos \theta}{\sin\theta} </math>  [[User:Kumar51formulas|credit]]
+
| <math>  \cot \theta = \frac{\cos \theta}{\sin\theta} \ </math>  [[User:Kumar51formulas|credit]]
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Definition of secant
 
| align="right" style="padding-right: 1em;" | Definition of secant
| <math>\sec \theta = \frac{1}{\cos \theta}</math>
+
| <math>\sec \theta = \frac{1}{\cos \theta} \ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Definition of cosecant
 
| align="right" style="padding-right: 1em;" | Definition of cosecant
| <math>\csc \theta = \frac{1}{\sin \theta}</math>
+
| <math>\csc \theta = \frac{1}{\sin \theta} \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Definition of versed sine (versine)
 +
| <math>\text{ver } \theta = 1- \cos \theta \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | Definition of versed cosine (versine)
 +
| <math>\text{vercosine } \theta = 1+ \cos \theta \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" | please continue
 +
| place formula here
 
|-
 
|-
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Pythagorean identity and other related identities
 
! style="background: rgb(238, 238, 238) none repeat scroll 0% 0%; -moz-background-clip: -moz-initial; -moz-background-origin: -moz-initial; -moz-background-inline-policy: -moz-initial;" colspan="2" | Pythagorean identity and other related identities
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | Pythagorean identity
 
| align="right" style="padding-right: 1em;" | Pythagorean identity
| <math>\cos^2 \theta+\sin^2 \theta =1</math>
+
| <math>\cos^2 \theta+\sin^2 \theta =1 \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math>\sin^2 \theta =  1-\cos^2 \theta  \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math>\cos^2 \theta = 1-\sin^2 \theta  \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math>\sec^2 \theta = 1+\tan^2 \theta \ </math>
 +
|-
 +
| align="right" style="padding-right: 1em;" |
 +
| <math>\csc^2 \theta = 1+\cot^2 \theta \ </math>
 
|-
 
|-
 
| align="right" style="padding-right: 1em;" | write name here
 
| align="right" style="padding-right: 1em;" | write name here

Revision as of 07:14, 22 October 2010

Trigonometric Identities
Basic Definitions
Definition of tangent $ \tan \theta = \frac{\sin \theta}{\cos\theta} $ credit
Definition of cotangent $ \cot \theta = \frac{\cos \theta}{\sin\theta} \ $ credit
Definition of secant $ \sec \theta = \frac{1}{\cos \theta} \ $
Definition of cosecant $ \csc \theta = \frac{1}{\sin \theta} \ $
Definition of versed sine (versine) $ \text{ver } \theta = 1- \cos \theta \ $
Definition of versed cosine (versine) $ \text{vercosine } \theta = 1+ \cos \theta \ $
please continue place formula here
Pythagorean identity and other related identities
Pythagorean identity $ \cos^2 \theta+\sin^2 \theta =1 \ $
$ \sin^2 \theta = 1-\cos^2 \theta \ $
$ \cos^2 \theta = 1-\sin^2 \theta \ $
$ \sec^2 \theta = 1+\tan^2 \theta \ $
$ \csc^2 \theta = 1+\cot^2 \theta \ $
write name here place formula here

Back to Collective Table

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman