Line 1: Line 1:
--[[User:Tsnowdon|Tsnowdon]] 23:03, 27 September 2008 (UTC)There are five "skeleton" outcomes. These are [5][0][0], [4][1][0], [3][2][0], [3][1][1], [2][2][1].
+
--[[User:Tsnowdon|Tsnowdon]] 23:03, 27 September 2008 (UTC)
 +
 
 +
There are five "skeleton" outcomes. These are [5][0][0], [4][1][0], [3][2][0], [3][1][1], [2][2][1].
 
(where [#] is a box with # elts)
 
(where [#] is a box with # elts)
  
Line 13: Line 15:
  
 
TSnowdon@purdue.edu
 
TSnowdon@purdue.edu
--[[User:Tsnowdon|Tsnowdon]] 23:03, 27 September 2008 (UTC)
 

Latest revision as of 18:04, 27 September 2008

--Tsnowdon 23:03, 27 September 2008 (UTC)

There are five "skeleton" outcomes. These are [5][0][0], [4][1][0], [3][2][0], [3][1][1], [2][2][1]. (where [#] is a box with # elts)

But the elements are indistinguishable, so there is only one way to obtain [x][y][z] (with x+y+z =5 obviously). Also the boxes are indistinguishable, so we must consider [x][y][z] and [y][z][x] to be the same outcome.

Thus the 5 "skeleton" outcomes are the only outcomes.

i.e. there are 5 ways to distribute 5 indistinguishable objects into 3 indistinguishable boxes.


By Tom Snowdon,

TSnowdon@purdue.edu

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang