m
 
Line 20: Line 20:
 
b. Compute the output when x[n] = u[n].  
 
b. Compute the output when x[n] = u[n].  
  
y[n] = h[n] * x[n] <br/>
+
<math>
y[n] = h[n] * u[n] <br/>
+
\begin{align}
y[n] = <math>0.5^nu[n] + 2(0.5)^{n-1}u[n-1]</math> * u[n] <br/>
+
y[n] &= h[n] * x[n] \\
y[n] = <math>(0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * u[n]) </math><br/>
+
y[n] &= h[n] * u[n] \\
 +
y[n] &= 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] * u[n] \\
 +
y[n] &= (0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * u[n]) \\
 +
\end{align}
 +
</math>
  
 
Splitting the expression into two parts, we evaluate them individually, <br/>
 
Splitting the expression into two parts, we evaluate them individually, <br/>
Line 61: Line 65:
 
c. Compute the output when x[n] = <math>0.25^n</math>u[n].  
 
c. Compute the output when x[n] = <math>0.25^n</math>u[n].  
  
y[n] = h[n] * x[n] <br/>
+
<math>
y[n] = h[n] * u[n] <br/>
+
\begin{align}
y[n] = <math>0.5^nu[n] + 2(0.5)^{n-1}u[n-1]</math> * 0.25^nu[n] <br/>
+
y[n] &= h[n] * x[n] \\
y[n] = <math>(0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * 0.25^nu[n]) </math><br/>
+
y[n] &= h[n] * u[n] \\
 +
y[n] &= 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] * 0.25^nu[n] \\
 +
y[n] &= (0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * 0.25^nu[n]) \\
 +
\end{align}
 +
</math>
  
 
Splitting the expression into two parts, we evaluate them individually, <br/>
 
Splitting the expression into two parts, we evaluate them individually, <br/>
Line 73: Line 81:
 
\begin{align}
 
\begin{align}
 
0.5^nu[n] * 0.25^nu[n] &=  \sum_{k=-\infty}^{\infty} 0.5^k u[k] 0.25^{n-k}u[n - k] \\
 
0.5^nu[n] * 0.25^nu[n] &=  \sum_{k=-\infty}^{\infty} 0.5^k u[k] 0.25^{n-k}u[n - k] \\
&= \sum_{k=0}^{\infty} \frac{0.5^k}{0.25^k} 0.25^nu[n - k] \\
+
&= \sum_{k=0}^{\infty} \left ( \frac{0.5}{0.25} \right )^k 0.25^nu[n - k] \\
&= \sum_{k=0}^{n} \frac{0.5^k}{0.25^k} 0.25^nu[n] \\
+
&= \sum_{k=0}^{n} 2^k 0.25^nu[n] \\
&= 0.25^nu[n] \sum_{k=0}^{n} \frac{0.5^k}{0.25^k} \\
+
&= 0.25^nu[n] \sum_{k=0}^{n} 2^k  \\
&= 0.25^nu[n] \frac{1-\frac{(0.5)^{n+1}}{(0.25)^{n+1}}}{1-\frac{0.5}{0.25}} \\
+
 
&= 0.25^nu[n] \frac{1-2^{n+1}}{1-2} \\
 
&= 0.25^nu[n] \frac{1-2^{n+1}}{1-2} \\
 
&= 0.25^n(2^{n+1} - 1)u[n]  \\
 
&= 0.25^n(2^{n+1} - 1)u[n]  \\

Latest revision as of 16:21, 20 October 2010


Solution to Q3 of Week 9 Quiz Pool


y[n] = x[n] + 2x[n-1] + 0.5y[n-1]

a. Compute the impulse response h[n] of the system.

$ y[n] = h[n]\text{ when }x[n] = \delta[n] $
$ h[-1] = 0 $
$ h[0] = 1 $
$ h[1] = 2 + 0.5 $
$ h[2] = 0.5(2 + 0.5) $
$ h[3] = 0.5(0.5(2 + 0.5)) $
...
$ h[n] = (0.5 + 0.5) + (0.5 + 2) + (0.5^2 + 2(0.5)^2) + (0.5^3 + 2(0.5)^3) + ... $
So
$ h[n] = 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] $

b. Compute the output when x[n] = u[n].

$ \begin{align} y[n] &= h[n] * x[n] \\ y[n] &= h[n] * u[n] \\ y[n] &= 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] * u[n] \\ y[n] &= (0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * u[n]) \\ \end{align} $

Splitting the expression into two parts, we evaluate them individually,
Using the definition of convolution,
$ (f * g)[n]\ \stackrel{\mathrm{def}}{=}\ \sum_{k=-\infty}^{\infty} f[k]\, g[n - k] $

$ \begin{align} 0.5^nu[n] * u[n] &= \sum_{k=-\infty}^{\infty} 0.5^k u[k] u[n - k] \\ &= \sum_{k=0}^{\infty} 0.5^k u[n - k] \\ &= \sum_{k=0}^{n} 0.5^k u[n] \\ &= u[n] \sum_{k=0}^{n} 0.5^k \\ &= u[n] \frac{1-0.5^{n+1}}{1-0.5} \\ &= 2(1-0.5^{n+1})u[n] \end{align} $

For the next part of the expression convolve with a delta function. Recall, that convolving a function with a shifted delta results in a shifted version of the function,

$ \begin{align} 2(0.5^{n-1}u[n-1]) * u[n] &= 2(0.5^nu[n] * \delta[n-1]) * u[n] \\ &= 2(0.5^nu[n] * u[n]) * \delta[n-1] \\ &= 2(2(1-0.5^{n+1})u[n]) * \delta[n-1] \\ &= 4(1-0.5^{n})u[n-1] \\ \end{align} $

Combining the two,

$ \begin{align} y[n] &= 2(1-0.5^{n+1})u[n] + 4(1-0.5^{n})u[n-1] \end{align} $

c. Compute the output when x[n] = $ 0.25^n $u[n].

$ \begin{align} y[n] &= h[n] * x[n] \\ y[n] &= h[n] * u[n] \\ y[n] &= 0.5^nu[n] + 2(0.5)^{n-1}u[n-1] * 0.25^nu[n] \\ y[n] &= (0.5^nu[n] * u[n]) + (2(0.5)^{n-1}u[n-1] * 0.25^nu[n]) \\ \end{align} $

Splitting the expression into two parts, we evaluate them individually,
Using the definition of convolution,
$ (f * g)[n]\ \stackrel{\mathrm{def}}{=}\ \sum_{k=-\infty}^{\infty} f[k]\, g[n - k] $

$ \begin{align} 0.5^nu[n] * 0.25^nu[n] &= \sum_{k=-\infty}^{\infty} 0.5^k u[k] 0.25^{n-k}u[n - k] \\ &= \sum_{k=0}^{\infty} \left ( \frac{0.5}{0.25} \right )^k 0.25^nu[n - k] \\ &= \sum_{k=0}^{n} 2^k 0.25^nu[n] \\ &= 0.25^nu[n] \sum_{k=0}^{n} 2^k \\ &= 0.25^nu[n] \frac{1-2^{n+1}}{1-2} \\ &= 0.25^n(2^{n+1} - 1)u[n] \\ \end{align} $

For the next part of the expression convolve with a delta function. Recall, that convolving a function with a shifted delta results in a shifted version of the function,

$ \begin{align} 2(0.5^{n-1}u[n-1]) * 0.25^nu[n] &= 2(0.5^nu[n] * \delta[n-1]) * 0.25^nu[n] \\ &= 2(0.5^nu[n] * 0.25^nu[n]) * \delta[n-1] \\ &= 2(0.25^n(2^{n+1} - 1)u[n]) * \delta[n-1] \\ &= 2(0.25^{n-1}(2^{n} - 1))u[n-1] \\ \end{align} $

Combining the two,

$ \begin{align} y[n] &= 0.25^n(2^{n+1} - 1)u[n] + 2(0.25^{n-1}(2^{n} - 1))u[n-1] \end{align} $

Credit: Prof. Bouman


Back to Lab Week 9 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva