(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q1 of Week 8 Quiz Pool == ---- <math>\begin{align} \text{(a)} \quad & y[n] = 0.6 y[n-1] + 0.4 x[n] \\ & h[n] = 0.6h[n-1] + 0.4\d...)
 
 
Line 13: Line 13:
  
 
<math>\begin{align}
 
<math>\begin{align}
{\color{White}abcde} & h[0]=0.2 \\
+
{\color{White}abcde} & h[0]=0.4 \\
& h[1]=0.8h[0]=0.2 \times 0.8 \\
+
& h[1]=0.6h[0]=0.4 \times 0.6 \\
& h[2]=0.8h[1]=0.2 \times (0.8)^2 \\
+
& h[2]=0.6h[1]=0.4 \times (0.6)^2 \\
 
& \ldots \\
 
& \ldots \\
& h[n] = 0.2(0.8)^n u[n] \\
+
& h[n] = 0.4(0.6)^n u[n] \\
 
\end{align}</math>
 
\end{align}</math>
  
Line 44: Line 44:
  
 
----
 
----
Credit: Prof. Charles Bouman
 
  
 
Back to [[ECE438_Week8_Quiz|Lab Week 8 Quiz Pool]]
 
Back to [[ECE438_Week8_Quiz|Lab Week 8 Quiz Pool]]

Latest revision as of 10:03, 13 October 2010



Solution to Q1 of Week 8 Quiz Pool


$ \begin{align} \text{(a)} \quad & y[n] = 0.6 y[n-1] + 0.4 x[n] \\ & h[n] = 0.6h[n-1] + 0.4\delta[n] \\ \end{align}\,\! $

assume that $ h[n]=0 $ when $ n<0 $.

$ \begin{align} {\color{White}abcde} & h[0]=0.4 \\ & h[1]=0.6h[0]=0.4 \times 0.6 \\ & h[2]=0.6h[1]=0.4 \times (0.6)^2 \\ & \ldots \\ & h[n] = 0.4(0.6)^n u[n] \\ \end{align} $

Quiz8Q1sol 1.jpg


$ \begin{align} \text{(b)} \quad & y[n] = y[n-1] + 0.25 (x[n]-x[n-3]) \\ & h[n] = h[n-1] + 0.25(\delta[n]-\delta[n-3]) \\ \end{align}\,\! $

assume that $ h[n]=0 $ when $ n<0 $.

$ \begin{align} {\color{White}abcde} & h[0]=0.25 \\ & h[1]=h[0]=0.25 \\ & h[2]=h[1]=0.25 \\ & h[3]=h[2]-0.25=0 \\ & h[4]=h[3]=0 \\ & \ldots \\ & h[n] = 0.25(u[n]-u[n-3]) \\ \end{align} $

Quiz8Q1sol 2.jpg


Back to Lab Week 8 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett