(New page: Category:2010 Fall ECE 438 Boutin ---- == Solution to Q2 of Week 8 Quiz Pool == ---- First, find the impulse response of <math>h_1[n]</math>. (we assumed that <math>h_1[n]=0</math>...)
 
Line 15: Line 15:
 
& h_1[2]=0.25h_1[1]=\left(0.25\right)^2 \\
 
& h_1[2]=0.25h_1[1]=\left(0.25\right)^2 \\
 
& \ldots \\
 
& \ldots \\
& h[n] = \left(0.25\right)^n u[n] \\
+
& h_1[n] = \left(0.25\right)^n u[n] \\
 
\end{align}\,\!</math>
 
\end{align}\,\!</math>
  

Revision as of 11:49, 8 October 2010



Solution to Q2 of Week 8 Quiz Pool



First, find the impulse response of $ h_1[n] $. (we assumed that $ h_1[n]=0 $ when $ n<0 $)

$ \begin{align} & h_1[n] = 0.25 h_1[n-1] + \delta[n] \\ & h_1[0]=1 \\ & h_1[1]=0.25h_1[0]=0.25 \\ & h_1[2]=0.25h_1[1]=\left(0.25\right)^2 \\ & \ldots \\ & h_1[n] = \left(0.25\right)^n u[n] \\ \end{align}\,\! $


In order to satisfy $ x[n]=h_2[n]\ast h_1[n]\ast x[n] $ for any discrete-time signal $ x[n] $,

$ h_2[n] $ must satisfy $ h_2[n]\ast h_1[n] = \delta[n] $.


Therefore, their Z-transform must satisfy $ H_1(z) H_2(z) = 1 $.

Since $ H_1(z)=\frac{1}{1-0.25z^{-1}} $, it follows that

$ H_2(z)=\frac{1}{H_1(z)}=1-0.25z^{-1} $

By its casual assumption, $ h_2[n]=\delta[n]-0.25\delta[n-1]\,\! $.


Then, the difference equation of the LTI system with the impulse reponss of $ h_2[n] $ is,

$ y[n]=x[n]-0.25x[n-1]\,\! $



Credit: Prof. Charles Bouman

Back to Lab Week 8 Quiz Pool

Back to ECE 438 Fall 2010 Lab Wiki Page

Back to ECE 438 Fall 2010

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett