(New page: = Homework 6, ECE438, Fall 2010, Prof. Boutin = Due in class, Friday October 15, 2010. The discussion page for this homework is here. Feel...)
 
Line 29: Line 29:
 
! scope="col" | Case  
 
! scope="col" | Case  
 
! scope="col" | N  
 
! scope="col" | N  
! scope="col" | <span class="texhtml">ω<sub>1</sub></span>  
+
! scope="col" | <math>\omega_1</math>  
 
! scope="col" | k  
 
! scope="col" | k  
! scope="col" | <span class="texhtml">ω<sub>2</sub></span>
+
! scope="col" | <math>\omega_2</math>
 
|-
 
|-
|  
+
| 1
|  
+
| 20
 
|  
 
|  
 
|  
 
|  
 
|  
 
|  
 
|-
 
|-
|  
+
| 2
|  
+
| 200
 
|  
 
|  
 
|  
 
|  
 
|  
 
|  
 
|-
 
|-
|  
+
| 3
|  
+
| 20
 
|  
 
|  
 
|  
 
|  
 
|  
 
|  
 
|-
 
|-
|  
+
| 4
|  
+
| 200
 
|  
 
|  
 
|  
 
|  
 
|  
 
|  
 
|-
 
|-
|  
+
| 5
|  
+
| 200
 
|  
 
|  
 
|  
 
|  
 
|  
 
|  
 
|-
 
|-
|  
+
| 6
|  
+
| 200
 
|  
 
|  
 
|  
 
|  

Revision as of 08:08, 8 October 2010

Homework 6, ECE438, Fall 2010, Prof. Boutin

Due in class, Friday October 15, 2010.

The discussion page for this homework is here. Feel free to share your answers/thoughts/questions on that page.


Question 1

Consider the signal

x[n] = sin(ω1n) + ksin(ω2n),

where k is a real valued constant.

a) Write a program that will

  1. Plot x[n].
  2. Compute the N point DFT X[k]. (Yes, you may use FFT routines.)
  3. Plot the magnitude of X[k].

Turn in a print out of your code.

b) Run your program and generate outputs for the cases shown below.

Case N $ \omega_1 $ k $ \omega_2 $
1 20
2 200
3 20
4 200
5 200
6 200




Question 2


Question 3


Back to ECE438, Fall 2010, Prof. Boutin

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood