Line 1: | Line 1: | ||
== Homework 6 collaboration area == | == Homework 6 collaboration area == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
p. 226: 1. | p. 226: 1. | ||
Line 13: | Line 7: | ||
Odd solutions in the back of the book. | Odd solutions in the back of the book. | ||
− | p. 226: #2: | + | p. 226: #2: |
<math>\mathcal(t^2 - 3)^2</math> | <math>\mathcal(t^2 - 3)^2</math> | ||
− | <math> | + | <math> = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 </math> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | So | |
− | + | <math>\mathcal{L}[(t^2-3)^20} = | |
+ | \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]=</math> | ||
− | |||
− | <math>\ | + | <math> = \frac{4!}{s^5} - 6\frac{3!}{s^3} + \frac{9}{s}</math> |
− | |||
− | + | p. 226: #4: | |
− | <math>\ | + | <math>\ sin^2 4 t = \frac {1 - cos2(4t)}{2} </math> |
− | + | So the Laplace Transform can be gotten from the table. | |
− | + | p. 226: #23. | |
− | <math>\mathcal[ | + | <math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s).</math> |
− | + | So | |
− | <math>\mathcal[ | + | <math>\mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt.</math> |
+ | Make the change of variables | ||
+ | <math>\tau=ct</math> | ||
− | + | to get | |
+ | <math>\mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\(1/c) d\tau)=</math> | ||
+ | <math>\frac{1}{c}F(s/c).</math> | ||
Even solutions (added by Adam M on Oct 5, please check results): | Even solutions (added by Adam M on Oct 5, please check results): | ||
Line 69: | Line 58: | ||
p. 226: 30. | p. 226: 30. | ||
− | <math> | + | <math>\mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math> |
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get | (AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get | ||
− | <math> | + | <math>\mathcal{L}^{-1}=-e^{-4t}+3e^{4t}</math> |
Revision as of 07:06, 7 October 2010
Homework 6 collaboration area
p. 226: 1.
$ \mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2} $
Odd solutions in the back of the book.
p. 226: #2:
$ \mathcal(t^2 - 3)^2 $
$ = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 $
So
$ \mathcal{L}[(t^2-3)^20} = \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]= $
$ = \frac{4!}{s^5} - 6\frac{3!}{s^3} + \frac{9}{s} $
p. 226: #4:
$ \ sin^2 4 t = \frac {1 - cos2(4t)}{2} $
So the Laplace Transform can be gotten from the table.
p. 226: #23.
$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s). $
So
$ \mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt. $
Make the change of variables
$ \tau=ct $
to get
$ \mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\(1/c) d\tau)= $
$ \frac{1}{c}F(s/c). $
Even solutions (added by Adam M on Oct 5, please check results):
p. 226: 10.
$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $
p. 226: 12.
$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $
p. 226: 30.
$ \mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
$ \mathcal{L}^{-1}=-e^{-4t}+3e^{4t} $