Line 14: | Line 14: | ||
-Does anyone have a hint on solving #23? | -Does anyone have a hint on solving #23? | ||
+ | |||
+ | |||
Even solutions (added by Adam M on Oct 5, please check results): | Even solutions (added by Adam M on Oct 5, please check results): | ||
Line 28: | Line 30: | ||
<math>inverse \mathcal{L}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math> | <math>inverse \mathcal{L}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math> | ||
+ | |||
+ | (AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get | ||
+ | <math>inverse \mathcal{L}=-e^{-4t}+3e^{4t}</math> | ||
Revision as of 16:18, 5 October 2010
Homework 6 collaboration area
Here is something to get you started:
$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt $
$ \mathcal{L}[f'(t)]= sF(s)-f(0) $
p. 226: 1.
$ \mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2} $
Odd solutions in the back of the book.
-Does anyone have a hint on solving #23?
Even solutions (added by Adam M on Oct 5, please check results):
p. 226: 10.
$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $
p. 226: 12.
$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $
p. 226: 30.
$ inverse \mathcal{L}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
$ inverse \mathcal{L}=-e^{-4t}+3e^{4t} $