Line 1: Line 1:
 
== Homework 6 collaboration area ==
 
== Homework 6 collaboration area ==
  
<math>\mathcal{L}</math>
+
Here is something to get you started:
 +
 
 +
<math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt</math>
 +
 
 +
<math>\mathcal{L}[f'(t)]= sF(s)-f(0)</math>
 +
 
 +
p. 226: 1.
 +
 
 +
<math>\mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2}</math>
 +
 
  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  

Revision as of 07:39, 5 October 2010

Homework 6 collaboration area

Here is something to get you started:

$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt $

$ \mathcal{L}[f'(t)]= sF(s)-f(0) $

p. 226: 1.

$ \mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2} $


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett